2022 No. 3
Article Contents

HUANG Yangyang, LI Tingyong, XIAO Siya, CHEN Chaojun, HUANG Ran, WANG Tao, WU Yao, XU Yuzhen, QIU Haiying, YANG Yan, LI Junyun. Analysis of influencing factors on mineral morphology of active speleothem——A case study of Furong cave in Chongqing[J]. Carsologica Sinica, 2022, 41(3): 488-500. doi: 10.11932/karst20220315
Citation: HUANG Yangyang, LI Tingyong, XIAO Siya, CHEN Chaojun, HUANG Ran, WANG Tao, WU Yao, XU Yuzhen, QIU Haiying, YANG Yan, LI Junyun. Analysis of influencing factors on mineral morphology of active speleothem——A case study of Furong cave in Chongqing[J]. Carsologica Sinica, 2022, 41(3): 488-500. doi: 10.11932/karst20220315

Analysis of influencing factors on mineral morphology of active speleothem

More Information
  • Stalagmites, secondary mineral deposits forming in karst caves, record much paleo-climate and paleo-environment information. In stalagmites, the mineral forms of calcium carbonate are aragonite and calcite. It is considered that the properties of bedrock, discharge of drip water, pH, and the Mg/Ca ratios of drip water are the important factors affecting the crystal morphology. In addition, the changes of mineral morphology in stalagmites are thought to indicate the changes of paleo-climate and paleo-environment. At present, most studies focus on inferring the change of paleoclimate through the crystal morphology in stalagmites, while there are few studies on analyzing the mineral crystal morphology of active speleothem (AS) according to modern cave monitoring data. In this study, in order to collect active speleothem and drip water samples during 2017-2018, glass plates were placed under 3 drip water sites (MP2, MP5, MP9) in Furong Cave located in Wulong District, Chongqing. The mineral crystal morphology of AS was identified by polarizing microscope. Systematic monitoring was performed on Mg/Ca ratios, pH, the discharge of drip water, the cave environment, as well as δ18O, δ13C and Mg/Ca ratios of the active speleothem deposited on the front and back sides of glass plates. The results suggest that, (1) The mineral crystal morphology of active speleothem that deposit on both sides of glass plates at MP2 is calcite. There are calcite and aragonite-calcite mixture on the front side of glass plates at MP5 and MP9. However, aragonite-calcite crystals deposit on the back side of the glass plates, and there are more aragonites than those on the front sides. (2) The Mg/Ca ratios of drip water collected from MP2 is less than the ratios from MP5 and MP9, which indicates that the Mg/Ca ratio of drip water is an important factor affecting the mineral morphology of active speleothem. And the effect of pH values of drip water on AS mineral crystal morphology is different at different drip sites. (3) Regardless of the front or back side of glass plates, the δ18O and δ13C of AS mixed with aragonite-calcite are more positive than the calcite-dominated AS, which suggests that changes in the AS mineral morphology will lead to changes in δ18O and δ13C. The systematic monitoring and analysis in Furong Cave show that the mineral form of AS is closely related to the surface environment and the karst hydrogeological conditions in the upper part of the cave, and it has been verified that the mineral form of AS in caves has important influence on the δ18O and δ13C of stalagmites.

  • 加载中
  • [1] Wang Y J, Cheng H, Edwards R L, An Z S,Wu J Y, Shen C C, Dorale J A. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China[J]. Science, 2001, 294(5550):2345-2345. doi: 10.1126/science.1064618

    CrossRef Google Scholar

    [2] Bar-Matthews M, Ayalon A, Gilmour M, Matthews A,Hawkesworth C J. Sea–land oxygen isotopic relationships from planktonic foraminifera and speleothems in the Eastern Mediterranean region and their implication for paleorainfall during interglacial intervals[J]. Geochimica et Cosmochimica Acta, 2003, 67(17):3181-3199. doi: 10.1016/S0016-7037(02)01031-1

    CrossRef Google Scholar

    [3] Wang X, Auler A S, Edwards R L, Cheng H,Cristalli P S,Smart P L,Richards D A,Shen C C . Wet periods in northeastern Brazil over the past 210 kyr linked to distant climate anomalies[J]. Nature, 2004, 432(7018):740-743. doi: 10.1038/nature03067

    CrossRef Google Scholar

    [4] Denniston R F, Dupree M, Dorale J A, Asmerom Y,Polyak V J,Carpenter S J. Episodes of late Holocene aridity recorded by stalagmites from Devil’s Icebox Cave, central Missouri, USA[J]. Quaternary Research, 2007, 68(1):45-52. doi: 10.1016/j.yqres.2007.04.001

    CrossRef Google Scholar

    [5] Cheng H, Edwards R L, Broecker W S. Ice Age Terminations[J]. Science, 2009, 326(5950):248-252. doi: 10.1126/science.1177840

    CrossRef Google Scholar

    [6] 林玉石, 黄新耀, 张美良,覃家铭, 姜光辉, 朱晓燕, 杨琰, 向官生, 黄智勇. 中国南方发现大型文石笋[J]. 地学前缘, 2007(2):236-241. doi: 10.3321/j.issn:1005-2321.2007.02.020

    CrossRef Google Scholar

    LIN Yushi, HUANG Xinyao, ZHANG Meiliang, QIN Jiaming, JIANG Guanghui, ZHU Xiaoyan, YANG Yan, XIANG Guansheng, HUANG Zhiyong. Large aragonite stalagmites found in south China[J]. Earth Science Frontiers, 2007(2):236-241. doi: 10.3321/j.issn:1005-2321.2007.02.020

    CrossRef Google Scholar

    [7] Murray J W. The deposition of calcite and aragonite in caves[J]. The Journal of Geology, 1954, 62(13):481-492.

    Google Scholar

    [8] Fairchild I J,Selmo E M, Borsato A,Mcdermott F,Frisia S. Aragonite-calcite relationships in speleothems (grotte de clamouse, france): environment, fabrics, and carbonate geochemistry[J]. Journal of Sedimentary Research, 2002, 72(5):687-699. doi: 10.1306/020702720687

    CrossRef Google Scholar

    [9] Davis K J. The role of Mg2+ as an impurity in calcite growth[J]. Science, 2000, 290(5494):1134-1137. doi: 10.1126/science.290.5494.1134

    CrossRef Google Scholar

    [10] Dove P M, Davis K J, De Yoreo J J, Wasylenki L E. Morphological consequences of differential Mg2+ incorporation at structurally distinct steps on calcite[J]. American Mineralogist, 2004, 89(5-6):714-720. doi: 10.2138/am-2004-5-605

    CrossRef Google Scholar

    [11] Riechelmann S, Schroeder Ritzrau A, Wassenburg J A, Schreuer J, Richter D K, Riechelmann D F C, Terente M, Constantin S, Mangini A, Immenhauser A. Physicochemical characteristics of drip waters: Influence on mineralogy and crystal morphology of recent cave carbonate precipitates[J]. Geochimica et Cosmochimica Acta, 2014, 145:13-29. doi: 10.1016/j.gca.2014.09.019

    CrossRef Google Scholar

    [12] Zhang H W, Cai Y J, Tan L C, An Z S. Stable isotope composition alteration produced by the aragonite-to-calcite transformation in speleothems and implications for paleoclimate reconstructions[J]. Sedimentary Geology, 2014, 309:1-14. doi: 10.1016/j.sedgeo.2014.05.007

    CrossRef Google Scholar

    [13] Burton E A, Walter L M. Relative precipitation rates of aragonite and Mg calcite from seawater: Temperature or carbonate ion control?[J]. Geology, 1987, 15(2):111-114. doi: 10.1130/0091-7613(1987)15<111:RPROAA>2.0.CO;2

    CrossRef Google Scholar

    [14] Railsback L B, Brook G A, Chen J, et al. Environmental controls on the petrology of a late Holocene speleothem from Botswana with annual layers of aragonite and calcite[J]. Journal of Sedimentary Research, 1994, 64(1a):147-155.

    Google Scholar

    [15] 张海伟, 蔡演军, 谭亮成. 石笋矿物类型、成因及其对气候和环境的指示[J]. 中国岩溶, 2010, 29(3):222-228. doi: 10.3969/j.issn.1001-4810.2010.03.002

    CrossRef Google Scholar

    ZHANG Haiwei, CAI Yanjun, TAN Liangcheng. Phase composition and formation of stalagmite minerals: Indications of climate and environment[J][J]. Carsologica Sinica, 2010, 29(3):222-228. doi: 10.3969/j.issn.1001-4810.2010.03.002

    CrossRef Google Scholar

    [16] Fernández-Díaz L, Putnis A, Prieto M, Putnis C V. The role of magnesium in the crystallization of calcite and aragonite in a porous medium[J]. Journal of Sedimentary Research, 1996, 66:482-491.

    Google Scholar

    [17] Given R K, Wilkinson B H. Kinetic control of morphology, composition, and mineralogy of abiotic sedimentary carbonates[J]. Journal of Sedimentary Petrology, 1985, 55(1):109-119.

    Google Scholar

    [18] Fairchild I J, Tooth A F, Frisia S, Hawkesworth C J, Huang Y M, McDermott F,Borsato A. Controls on trace element (Sr–Mg) compositions of carbonate cave waters: implications for speleothem climatic records[J]. Chemical Geology, 2000, 166(3):255-269.

    Google Scholar

    [19] Harmon R S, Atkinson T C, Atkinson J L. The mineralogy of Castleguard Cave, Columbia Icefields, Alberta Canada[J]. Arctic and Alpine Research, 1983, 15(4):503-516. doi: 10.2307/1551236

    CrossRef Google Scholar

    [20] Fairchild I J, Treble P C. Trace elements in speleothems as recorders of environmental change[J]. Quaternary Science Reviews, 2009, 28(5-6):449-468. doi: 10.1016/j.quascirev.2008.11.007

    CrossRef Google Scholar

    [21] Caddeo G A, Waele J D, Frau F,Bruce Railsback L. Trace element and stable isotope data from a flowstone in a natural cave of the mining district of SW Sardinia (Italy): evidence for Zn2+-induced aragonite precipitation in comparatively wet climatic conditions[J]. International Journal of Speleology, 2011, 40(2):181-190. doi: 10.5038/1827-806X.40.2.10

    CrossRef Google Scholar

    [22] Wassenburg J A, Immenhauser A, Richter D K, Jochum K P, Fietzke J,Deininger M, Goos M, Scholz D,Sabaoui A. Climate and cave control on Pleistocene/Holocene calcite-to-aragonite transitions in speleothems from Morocco: Elemental and isotopic evidence[J]. Geochimica et Cosmochimica Acta, 2012, 92(1):23-47.

    Google Scholar

    [23] Wassenburg J A, Scholz D, Jochum K P, Cheng H,Oster J,Immenhauser A, Richter D K, Haeger T,Jamieson R A,Baldini J U L, Hoffmann D,Breitenbach S F M. Determination of aragonite trace element distribution coefficients from speleothem calcite-aragonite transitions[J]. Geochimica et Cosmochimica Acta, 2016, 190:347-367. doi: 10.1016/j.gca.2016.06.036

    CrossRef Google Scholar

    [24] Jens F, Jennifer A, Christoph S, Andrea S R, Birgit P, Christina G, Norbert F,Martin T. Carbon and oxygen isotope fractionation in the water-calcite-aragonite system[J]. Geochimica et Cosmochimica Acta, 2018:127-139.

    Google Scholar

    [25] Frisia S. Microstratigraphic logging of calcite fabrics in speleothems as tool for palaeoclimate studies[J]. International Journal of Speleology, 2014, 44(1):1-16.

    Google Scholar

    [26] Perrin C, Prestimonaco L, Servelle G, Tilhac R, Maury M, Cabrol P. Aragonite–Calcite Speleothems: Identifying Original and Diagenetic Features[J]. Journal of Sedimentary Research, 2014, 84(4):245-269. doi: 10.2110/jsr.2014.17

    CrossRef Google Scholar

    [27] Domínguez-Villar D, Krklec K, Pelicon P, Fairchild I J,Cheng H,Edwards L R. Geochemistry of speleothems affected by aragonite to calcite recrystallization – Potential inheritance from the precursor mineral[J]. Geochimica et Cosmochimica Acta, 2016, 200:310-329.

    Google Scholar

    [28] 杨琰, 袁道先, 程海,覃嘉铭,张美良,林玉石,朱晓燕. 文石-方解石石笋U/Th体系的封闭性判断及意义[J]. 地球化学, 2008, 37(2):97-106. doi: 10.3321/j.issn:0379-1726.2008.02.001

    CrossRef Google Scholar

    YANG Yan, YUAN Daoxian, CHENG Hai, QIN Jiaming, ZHANG Meiliang, LIN Yushi, ZHU Xiaoyan. Discrimination of close U/Th system in aragonite-calcite stalagmites and their significance[J]. Geochimica, 2008, 37(2):97-106. doi: 10.3321/j.issn:0379-1726.2008.02.001

    CrossRef Google Scholar

    [29] 段武辉, 谭明, 程海, 张勇. 云南仙人洞文石类石笋年层结构电镜分析[J]. 第四纪研究, 2010, 30(5):1066-1067.

    Google Scholar

    DUAN Wuhui, TAN Ming, CHENG Hai, ZHANG Yong. Intra-annual Structure of Aragonitic Stalagmite Laminae from Yunnan Xianren Cave: SEM Analysis[J]. Quaternary Sciences, 2010, 30(5):1066-1067.

    Google Scholar

    [30] Duan W H, Cai B G, Tan M, Liu H, Zhang Y. The growth mechanism of the aragonitic stalagmite laminae from Yunnan Xianren Cave, SW China revealed by cave monitoring [J]. Boreas, 2012, 41(1): 113-123.

    Google Scholar

    [31] Ruan J Y,Hu C Y. Seasonal variations and environmental controls on stalagmite calcite crystal growth in Heshang Cave, central China[J]. Science Bulletin, 2010(34):83-89.

    Google Scholar

    [32] 朱学稳. 芙蓉洞的次生化学沉积物[J]. 中国岩溶, 1994, 13(4):357-368.

    Google Scholar

    ZHU Xuewen. Secondary speleothems in Furong Cave[J]. Carsologica Sinica, 1994, 13(4):357-368.

    Google Scholar

    [33] Li T Y, Shen C C, Li H C, Li J Y,Chiang H W,Song S R,Yuan D X,Lin C D J,Gao P, Zhou L, Wang J L,Ye M Y,Tang L L,Xie S Y. Oxygen and carbon isotopic systematics of aragonite speleothems and water in Furong Cave, Chongqing, China[J]. Geochimica et Cosmochimica Acta, 2011, 75(15):4140-4156. doi: 10.1016/j.gca.2011.04.003

    CrossRef Google Scholar

    [34] LI T Y,LI H C,XIANG X J ,KUO Tz S,LI J Y,ZHOU F L,CHEN H L,PENG L L. Transportation characteristics of δ13C in the plants-soil-bedrock-cave system in Chongqing karst area[J]. Science China, 2012, 55(4):685-694. doi: 10.1007/s11430-011-4294-y

    CrossRef Google Scholar

    [35] Zhang J, Li T Y. Seasonal and interannual variations of hydrochemical characteristics and stable isotopic compositions of drip waters in Furong Cave, southwest China based on 12years' monitoring[J]. Journal of Hydrology, 2019, 572:40-50. doi: 10.1016/j.jhydrol.2019.02.052

    CrossRef Google Scholar

    [36] 黄春霞, 李廷勇, 韩立银, 李俊云, 袁娜, 王海波, 张涛涛, 赵鑫. 重庆芙蓉洞滴水现代次生化学沉积物沉积速率与元素特征[J]. 中国岩溶, 2015, 34(3):238-246.

    Google Scholar

    HUANG Chunxia, LI Tingyong, HAN Liyin, LI Junyun, YUAN Na, WANG Haibo, ZHANG Taotao, ZHAO Xin. Deposition rates and element features of active sediments under drip water in Furong cave of Chongqing[J]. Carsologica Sinica, 2015, 34(3):238-246.

    Google Scholar

    [37] 周福莉, 李廷勇, 陈虹利, 彭玲莉,李俊云,代彪. 重庆芙蓉洞洞穴水水文地球化学指标的时空变化[J]. 水土保持学报, 2012, 26(3):253-259.

    Google Scholar

    ZHOU Fuli, LI Tingyong, CHEN Hongli, PENG Lingli, LI Junyun, DAI Biao. Spacial and temporal variation of hydrogeochemical indices of the cave water in Furong cave, Chongqing[J]. Jourual of Soil and Water Conservation, 2012, 26(3):253-259.

    Google Scholar

    [38] Li J Y, Li T Y. Seasonal and annual changes in soil/cave air pCO2 and the δ13C DIC of cave drip water in response to changes in temperature and rainfall[J]. Applied Geochemistry, 2018, 93:94-101. doi: 10.1016/j.apgeochem.2018.04.002

    CrossRef Google Scholar

    [39] Berner R A. The role of magnesium in the crystal growth of calcite and aragonite from sea water[J]. Geochimica et Cosmochimica Acta, 1975, 39:489-504. doi: 10.1016/0016-7037(75)90102-7

    CrossRef Google Scholar

    [40] Thrailkill J. Carbonate deposition in Carlsbad caverns[J]. The Journal of Geology, 1971, 79(6):683-695. doi: 10.1086/627698

    CrossRef Google Scholar

    [41] Cabrol P, Coudray J. Climatic fluctuations influence the genesis and diagenesis of carbonate speleothems in southwestern France[J]. National Speleological Society Bulletin, 1982, 44(4):112-117.

    Google Scholar

    [42] Li J Y, Li T Y, Shen C C, et al. Variations and significance of Mg/Sr and 87Sr/86Sr in a karst cave system in southwest China[J]. Journal of Hydrology, 2021, 596:126140. doi: 10.1016/j.jhydrol.2021.126140

    CrossRef Google Scholar

    [43] Spötl C, Unterwurzacher M, Mangini A, Mangini A. Carbonate Speleothems in the Dry, Inneralpine Vinschgau Valley, Northernmost Italy: Witnesses of Changes in Climate and Hydrology Since the Last Glacial Maximum[J]. Journal of Sedimentary Research, 2002, 72(6):793-808. doi: 10.1306/041102720793

    CrossRef Google Scholar

    [44] Mcmillan E A, Fairchild I J, Frisia S, et al. Annual trace element cycles in calcite–aragonite speleothems: evidence of drought in the western Mediterranean 1200–1100yrBP [J]. Journal of Quaternary Science, 2005, 20 (5).

    Google Scholar

    [45] Csoma A E, Goldstein R H, Pomar L. Pleistocene speleothems of Mallorca: implications for palaeoclimate and carbonate diagenesis in mixing zones[J]. Sedimentology, 2006, 53(1):213-236. doi: 10.1111/j.1365-3091.2005.00759.x

    CrossRef Google Scholar

    [46] Musgrove M L and Banner J L. Controls on the spatial and temporal variability of vadose dripwater geochemistry: Edwards aquifer, central Texas[J]. Geochimica et Cosmochimica Acta, 2004, 68(5):1007-1020. doi: 10.1016/j.gca.2003.08.014

    CrossRef Google Scholar

    [47] Rossi C, Lozano R P. Hydrochemical controls on aragonite versus calcite precipitation in cave dripwaters[J]. Geochimica et Cosmochimica Acta, 2016, 192:70-96. doi: 10.1016/j.gca.2016.07.021

    CrossRef Google Scholar

    [48] Tarutani T, Clayton R N, Mayeda T K. The effect of polymorphism and magnesium substitution on oxygen isotope fractionation between calcium carbonate and water[J]. Geochimica et Cosmochimica Acta, 1969, 33(8):987-996. doi: 10.1016/0016-7037(69)90108-2

    CrossRef Google Scholar

    [49] Mucci A, O’Neil J R, Kim S T,Hillaire-Marcel C. Oxygen isotope fractionation between synthetic aragonite and water: Influence of temperature and Mg2+ concentration[J]. Geochimica et Cosmochimica Acta, 2007, 71(19):4704-4715. doi: 10.1016/j.gca.2007.04.019

    CrossRef Google Scholar

    [50] Grossman E L, Ku T L. Aragonite-isotopic paleotemperature scale based on the benthic foraminifera Hoeglundina elegans [J], 1981, 13: 464.

    Google Scholar

    [51] Rubinson M, Clayton R N. Carbon-13 fractionation between aragonite and calcite[J]. Geochimica et Cosmochimica Acta, 1969, 33(8):997-1002. doi: 10.1016/0016-7037(69)90109-4

    CrossRef Google Scholar

    [52] Mickler P J, Stern L A, Banner J L. Large kinetic isotope effects in modern speleothems[J]. Geological Society of America Bulletin, 2006, 118(1-2):65-81. doi: 10.1130/B25698.1

    CrossRef Google Scholar

    [53] Deininger M, Fohlmeister J, Scholz D, Mangini A. Isotope disequilibrium effects: The influence of evaporation and ventilation effects on the carbon and oxygen isotope composition of speleothems: A model approach[J]. Geochimica et Cosmochimica Acta, 2012, 96(1):57-79.

    Google Scholar

    [54] Feng W M, Casteel R C, Banner J L,Ayla Heinze-Fry. Oxygen isotope variations in rainfall, drip-water and speleothem calcite from a well-ventilated cave in Texas, USA: Assessing a new speleothem temperature proxy[J]. Geochimica et Cosmochimica Acta, 2014, 127:233-250. doi: 10.1016/j.gca.2013.11.039

    CrossRef Google Scholar

    [55] Chen C J,Huang R,Yuan D X,Zhang J,Cheng H,Ning Y F,Yu T L, Shen C C ,Edwards R L,Long X Y,Wang T,Xiao S Y,Wu Y,Liu Z Q,Li T Y,Li J Y. Karst hydrological changes during the Late-Holocene in Southwestern China[J]. Quaternary Science Reviews, 2021, 258:106865. doi: 10.1016/j.quascirev.2021.106865

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(4)

Article Metrics

Article views(1618) PDF downloads(196) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint