2022 No. 3
Article Contents

ZHANG Cheng. Theory of karst dynamics and development of modern karst science[J]. Carsologica Sinica, 2022, 41(3): 378-383. doi: 10.11932/karst20220305
Citation: ZHANG Cheng. Theory of karst dynamics and development of modern karst science[J]. Carsologica Sinica, 2022, 41(3): 378-383. doi: 10.11932/karst20220305

Theory of karst dynamics and development of modern karst science

  • The core of the theory of karst dynamics is the carbon-water-calcium cycle, which emphasizes the systematic thinking and global view, and puts forward the conceptual model, structure and function of the karst dynamic system. The new growing point of discipline resulted from karst dynamics research has a milestone significance for the formation and development of modern karst science. The concept of "karst feature complex" has laid a complete method system for the study of karst heterogeneity, classification of karst types and formation environment. The initiation study of karst carbon cycle and carbon sink effects has successfully introduced karstology study into the field of global change, which opens a window for recognizing the role of karst processes in the global carbon cycle. Moreover, extending the study of karst geochemistry to the integration of inorganic and organic processes provides a clearer idea and method for the restoration and protection of fragile karst environment. The implementation of karst IGCP project reflects the guiding significance of karst dynamics theory for the establishment of International Karst Research Center under the auspices of UNESCO, meanwhile, karst dynamics theory has laid a solid theoretical and method foundation for us to consciously integrate into the national "Belt and Road" initiative, ecological civilization development strategy and the goals of "double carbon".

  • 加载中
  • [1] White W B. Geomorphology and hydrology of karst terains[M]. New York: Oxford University Press, 1988: 1-464.

    Google Scholar

    [2] 袁道先, 蔡桂鸿. 岩溶环境学[M]. 重庆: 重庆出版社, 1988: 1-332.

    Google Scholar

    YUAN Daoxian, CAI Guihong. Karst environment[M]. Chongqing: Chongqing Publishing House, 1988: 1-332.

    Google Scholar

    [3] 朱学稳, 汪训一, 朱德浩, 等. 桂林岩溶地貌与洞穴研究[M]. 北京: 地质出版社, 1988: 1-249.

    Google Scholar

    ZHU Xueweng, WANG Xunyi, ZHU Dehao, et al. Guilin karst geomorphology and cave study[M]. Beijing: Geological Publishing House, 1988: 1-249.

    Google Scholar

    [4] Ford D C, Williams P W. Karst geomorphology and hydrology[M]. London: Unwin Hyman, 1989: 1-601.

    Google Scholar

    [5] Yuan D, Zhu D, Weng J, et al. Karst of China[M]. Beijing: Geological Publishing House, 1991, 224 p.

    Google Scholar

    [6] Ford D C, Williams P. Karst hydrogeology and geomorphology[M]. London: John Wiley and Sons Ltd. 2007: 1-562.

    Google Scholar

    [7] Goldscheider N, Drew D (Eds). Methods in karst hydrogeology[M]. Leiden: Taylor & Francis, 2007, 264 p.

    Google Scholar

    [8] 袁道先. 现代岩溶学和全球变化研究[J]. 地学前缘( 中国地质大学,北京), 1997, 4(1-2):17-25. doi: 10.3321/j.issn:1005-2321.1997.01.003

    CrossRef Google Scholar

    [9] 袁道先. 碳循环与全球岩溶[J]. 第四纪研究. 1993a, 13(1): 1-6.

    Google Scholar

    YUAN Daoxian. Carbon cycle and global karst[J].Quaternary Sciences,1993a,13(1):1-6.

    Google Scholar

    [10] Yuan Daoxian. IGCP448, World correlation of karst ecosystem (2000–2004)[J]. Episodes, 2000, 23(4):285-286.

    Google Scholar

    [11] 袁道先, 蒋勇军, 沈立成, 等. 现代岩溶学[M]. 北京: 科学出版社, 2016: 1-363.

    Google Scholar

    YUAN Daoxian, JIANG Yongjun, SHEN Licheng, et al. Modern karstology[M]. Beijing: Science Press, 2016: 1-363.

    Google Scholar

    [12] Yuan Daoxian, On the karst ecosystem [J]. Acta Geologica Sinica, 2001, 75(3): 336- 338.

    Google Scholar

    [13] Yuan Daoxian, Liu Zaihua (Eds). Global karst correlation [M]. Utrecht, Netherlands/Beijing, New York: Science Press. 1998, 308 pages.

    Google Scholar

    [14] Yuan D, Summary of IGC P379“ Karst Processes and the Carbon Cycle” (1995-1999) [A] . In: Yuan D, Zhang C (Eds), Karst processes and the carbon cycle-final report of IGCP379 [C]. Beijing: Geological Publishing Hous e. 2002: 1- 32.

    Google Scholar

    [15] 袁道先, 章程. 岩溶动力学的理论探索与实践[J]. 地球学报, 2008, 29(3):355-365. doi: 10.3321/j.issn:1006-3021.2008.03.009

    CrossRef Google Scholar

    YUAN Daoxian, ZHANG Cheng. Karst dynamics theory in China and its practice[J]. Acta Geoscientica Sinica, 2008, 29(3):355-365. doi: 10.3321/j.issn:1006-3021.2008.03.009

    CrossRef Google Scholar

    [16] National Research Council. Basic research opportunities in earth science [M]. Washington D C: National Academy Press, 2001, Chapter 2: 35-45.

    Google Scholar

    [17] Brantley S L, White T S, White A F. Frontiers in exploration of the critical zone [R]. USA, 2005.

    Google Scholar

    [18] Chris Groves, Yuan Daoxian, Zhang Cheng. IGCP 299, 379, 448, 513, 598: Global efforts to understand the nature of karst systems: over two decades with the IGCP[A]. In: Derbyshire E(Editor). Tales Set in Stone–40 years of the International Geoscience Programme. Paris: UNESCO, 2012: 80-87.

    Google Scholar

    [19] Yuan Daoxian. Sensitivity of karst process to environmental change alone the PEP II Transect[J]. Quaternary International, 1997, 37: 105-113.

    Google Scholar

    [20] Regnier P, Friedlingstein P, Ciais P, et al. Anthropogenic perturbation of the carbon fluxes from land to ocean[J]. Nature Geoscience, 2013, 6(8): 597-607.

    Google Scholar

    [21] Ciais P, Sabine C, Bala G, et al. Carbon and other biogeochemical cycles//Climate Change 2013: The Physical Science Basis[A]. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2014: 465-570.

    Google Scholar

    [22] Zhang Cheng, Yuan Daoxian. New development of IGCP 448 “World Correlation of Karst Ecosystem (2000–2004)”[J]. Episodes, 2001, 24(4):279-280.

    Google Scholar

    [23] Zhang Cheng, Chris Groves, Yuan Daoxian. New development of IGCP/SIDA 598 “Environmental Change and Sustainability in Karst Systems (2011-2015)”[J]. Episodes, 2015, 38(3): 219-221.

    Google Scholar

    [24] Yuan DX. Contribution of IGCP379 “Karst Processes and Carbon Cycle” to Global Change[J]. Episodes, 1998, 21(3): 198.

    Google Scholar

    [25] 袁道先, 蒋忠诚. IGCP379“岩溶作用与碳循环”在中国的研究进展[J]. 水文地质工程地质, 2000, 27(1): 49-51.

    Google Scholar

    YUAN Daoxian, JIANG Zhongcheng. Progress of IGCP379 “Karst Processes and Carbon Cycle” in China. Hydrogeology & Engineering Geology, 2000, 27(1): 49-51.

    Google Scholar

    [26] Yuan D X, Zhang C(Eds). Karst Processes and the carbon cycle-Final Report of IGCP379. Beijing: Geological Publishing House. 2002, 1-220.

    Google Scholar

    [27] Merkel B J, Planer-Friedrich B. Groundwater geochemistry[M]. Berlin: Springer, 2005, 1-200.

    Google Scholar

    [28] Zhang C, Yuan D X, Cao J H. Analysis of the environmental sensitivities of a typical dynamic epikarst system at the Nongla monitoring site, Guangxi, China[J]. Environmental Geology, 2005, 47: 615–619.

    Google Scholar

    [29] Zhang C. Carbonate rock dissolution rates in different landuses and their carbon sink effect[J]. Chinese Science Bulletin, 2011, 56(35): 3759-3765.

    Google Scholar

    [30] Liu Z, Liu X, Liao C. Daytime deposition and nighttime dissolution of calcium carbonate controlled by submerged plants in a karst spring-fed pool: insights from high time-resolution monitoring of physico-chemistry of water[J]. Environmental Geology. 2008, 55, 1159-1168.

    Google Scholar

    [31] Zhang C, Wang J L, Pu J B, et al. Bicarbonate daily variations in a karst river: the carbon sink effect of subaquatic vegetation photosynthesis[J]. Acta Geologica Sinica (English Edition), 2012, 86(4): 973-979.

    Google Scholar

    [32] 肖琼, 赵海娟, 章程, 贺秋芳,吴夏. 岩溶区地表水体惰性有机碳研究[J]. 第四纪研究. 2020, 40(4): 1058-1069.

    Google Scholar

    XIAO Qiong, ZHAO Haijuan, ZHANG Cheng, HE Qiufang,WU Xia. Study of the recalcitrant dissolved organic carbon in karst surface water[J]. Quaternary Sciences, 2020, 40(4): 1058-1069.

    Google Scholar

    [33] He Q F, Xiao Q, Fan J X, et al. The impact of heterotrophic bacteria on recalcitrant dissolved organic carbon formation in a typical karstic river[J]. Science of the Total Environment, 2022, 815 152576.

    Google Scholar

    [34] 刘再华, Dreybrodt W, 王海静. 一种由全球水循环产生的可能重要的CO2汇[J]. 科学通报, 2007, 52(20): 2418-2422.

    Google Scholar

    LIU Zaihua, Dreybrodt W, WANG Haijing. A potentially important CO2 sink caused by the global water cycle. Chinese Science Bulletin, 2007, 52(20): 2418-2422.

    Google Scholar

    [35] Yuan D X. Foreword for the special topic “Geological Processes in Carbon Cycle”[J]. Chinese Science Bulletin, 2011, 56(35): 3741-3742.

    Google Scholar

    [36] Andrews J A, Schlesinger W H. Soil CO2 dynamics, acidification, and chemical weathering in a temperate forest with experimental CO2 enrichment[J]. Global Biogeochemical cycles, 2001, 15(1): 149-162.

    Google Scholar

    [37] Schindlbacher A, Borken W, Djukic I, et al. Contribution of carbonate weathering to the CO2 efflux from temperate forest soils[J]. Biogeochemistry, 2015, 124:273-290. doi: 10.1007/s10533-015-0097-0

    CrossRef Google Scholar

    [38] Zhang C, Xiao Q, Wu Z, et al. Ecosystem-driven karst carbon cycle and carbon sink effects[J]. Journal of Groundwater Science and Engineering, 2022, 10(2): 99-112.

    Google Scholar

    [39] http://www.gov.cn/zhengce/content/2021-10/26/content_5644984.htm.

    Google Scholar

    [40] 袁道先, 刘再华, 林玉石, 等. 中国岩溶动力系统[M]. 北京: 地质出版社, 2002: 1-275.

    Google Scholar

    YUAN Daoxian, LIU Zaihua, LIN Yushi, et al. Karst dynamic systems in China[M]. Beijing: Geological Publishing House, 2002:1-275.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Article Metrics

Article views(1552) PDF downloads(160) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint