2022 No. 3
Article Contents

CHEN Xi, ZHANG Zhicai. An overview on the development of science and ecological hydrology of the earth critical zones in karst area[J]. Carsologica Sinica, 2022, 41(3): 356-364. doi: 10.11932/karst20220303
Citation: CHEN Xi, ZHANG Zhicai. An overview on the development of science and ecological hydrology of the earth critical zones in karst area[J]. Carsologica Sinica, 2022, 41(3): 356-364. doi: 10.11932/karst20220303

An overview on the development of science and ecological hydrology of the earth critical zones in karst area

  • In view of the evolution history of ecology and environtment in karst area of sourthwest China and the challenges under the new situation,in this paper, the results of observation experiments on vegetation,hydrology,soil and dissolution test in three stages of vegetation degradation,artificial restoration and natural succession are systematically summarized, the development and existing problems of karst eco-hydrological model are expounded.The structure and composition of the atmosphere-vegetation-soil-rock system and the concept of co-evolution in karst area are put forward based on the scientific system thinking of the earth critical zones and the multidisciplinary comprehensive research paradigm.The research approaches of the co-evolution of eco-hydrology and carbon,water,and calcium cycles are discussed from the perspective of interdisciplinary,systematic observation and model intergration.Based on this,this paper puts forward suggestions to promote the development of karst eco-hydrology,so as to provide scientific support for the restoration of ecology and environment in karst area under the situation of global climate change and green development.

  • 加载中
  • [1] Ford D C, Williams P W. Karst hydrogeology and geomorphology [M]. Wiley, Chichester, England, 2007.

    Google Scholar

    [2] 侯文娟, 高江波, 彭韬, 吴绍洪, 戴尔. 结构-功能-生境框架下的西南喀斯特生态系统脆弱性研究进展[J]. 地理科学进展, 2016, 35 (3): 320-330.

    Google Scholar

    HOU Wenjuan, GAO Jiangbo, PENG Tao, WU Shaohong, DAI Er. Review of ecosystem vulnerability studies in the karst region of Southwest China based ona structure-function-habitat framework[J]. Progress in Geography,2016, 35(3): 320-330.

    Google Scholar

    [3] 黄晓云, 林德根, 王静爱, 常晟. 气候变化背景下中国南方喀斯特地区NPP时空变化[J]. 林业科学, 2013, 49(5):10-16. doi: 10.11707/j.1001-7488.20130502

    CrossRef Google Scholar

    HUANG Xiaoyun, LIN Degen, WANG Jing’ai, CHANG Sheng. Temporal and spatial npp variation in the karst region in South China under the background of climate change[J]. Scientia Silvae Sinicae, 2013, 49(5):10-16. doi: 10.11707/j.1001-7488.20130502

    CrossRef Google Scholar

    [4] 李阳兵, 邵景安, 王世杰, 魏朝富. 岩溶生态系统脆弱性研究[J]. 地理科学进展, 2006, 25(5):1-9. doi: 10.3969/j.issn.1007-6301.2006.05.001

    CrossRef Google Scholar

    LI Yangbing, SHAO jing’an WANG Shijie, WEI Chaofu. A conceptual analysis of kar st ecosystem fr agility[J]. Progress in Geography, 2006, 25(5):1-9. doi: 10.3969/j.issn.1007-6301.2006.05.001

    CrossRef Google Scholar

    [5] FENG Xiaoming, FU Bojie, PIAO Shilong, WANG Shuai, Philippe Ciais, ZENG Zhenzhong, Lü Yihe, ZENG Yuan, LI Yue, JIANG Xiaohui, WU Bingfang. Revegetation in china’s loess plateau is approaching sustainable water resource limits[J]. Nature Climate Change, 2016, 6(11):1019-1022. doi: 10.1038/nclimate3092

    CrossRef Google Scholar

    [6] LIANG Wei, BAI Dan, WANG Feiyu, FU Bojie, YAN Junping, WANG Shuai, YANG Yuting, LONG Di, FENG Minquan. Quantifying the impacts of climate change and ecological restoration on streamflow changes based on a budyko hydrological model in china's loess plateau[J]. Water Resources Research, 2015, 51(8):6500-6519. doi: 10.1002/2014WR016589

    CrossRef Google Scholar

    [7] Tong X W, Brandt M,Yue Y M, Horion S,Wang K L,Keersmaecker W D,Tian F,Schurgers G,Xiao X M, Luo Y Q. Increased vegetation growth and carbon stock in china karst via ecological engineering[J]. Nature Sustainability, 2018, 1:44-50. doi: 10.1038/s41893-017-0004-x

    CrossRef Google Scholar

    [8] NRC, National Research Council. Basic research opportunities in earth sciences [R]. National Academies Press, Washington, DC. 2001.

    Google Scholar

    [9] Banwart S A, Chorver J, Gaillardet G, et al. Sustaining Earth's Critical Zone Basic Science and Interdisciplinary Solutions for Global Challenges [M]. 2013, United Kingdom, ISBN: 978-0-9576890-0-8.

    Google Scholar

    [10] Troch Peter A, Lahmers Tim, Meira Antonio, Mukherjee Rajarshi, Pedersen Jonas W, Roy Tirthankar, Valdes-Pineda Rodrigo. Catchment coevolution: A useful framework for improving predictions of hydrological change?[J]. Water Resources Research, 2015, 51(7):4903-4922. doi: 10.1002/2015WR017032

    CrossRef Google Scholar

    [11] 袁道先, 章程, 岩溶动力学的理论探索与实践[J]. 地球学报, 2008, 29(3): 355-365

    Google Scholar

    YUAN Daoxian, ZHANG Cheng. Karst dynamics theory in China and its Practice[J]. Acta Geoscientica Sinica, 2008, 29(3): 355-365

    Google Scholar

    [12] Kochendorfer J P, Ramirez J A. Ecohydrologic controls on vegetation density and evapotranspiration partitioning across the climatic gradients of the central united states[J]. Hydrology Earth System Sciences, 2008, 14(10):2121-2139.

    Google Scholar

    [13] 李阳兵, 王世杰, 容丽. 西南岩溶山地石漠化及生态恢复研究展望[J]. 生态学杂志, 2004, 23(6):84-88. doi: 10.3321/j.issn:1000-4890.2004.06.018

    CrossRef Google Scholar

    LI Yangbing, WANG Shijie, RONG Li. Prospect of the study on rock desertification and its restoration in southwest Karst mountains[J]. Chinese Journal of Ecology, 2004, 23(6):84-88. doi: 10.3321/j.issn:1000-4890.2004.06.018

    CrossRef Google Scholar

    [14] 刘方, 王世杰, 罗海波, 刘元生, 何腾兵, 龙健. 喀斯特石漠化过程中植被演替及其对径流水化学的影响[J]. 土壤学报, 2006, 43(1):26-32. doi: 10.3321/j.issn:0564-3929.2006.01.004

    CrossRef Google Scholar

    LIU Fang, WANG Shijie, LUO Haibo, LIU Yuansheng, HE Tengbin, LONG Jian. Vegetation Succession with karst rocky desertification and its impact on water chemistry of runoff[J]. Acta Pedologica Sinica, 2006, 43(1):26-32. doi: 10.3321/j.issn:0564-3929.2006.01.004

    CrossRef Google Scholar

    [15] 蒋忠诚, 王瑞江, 裴建国, 何师意. 我国南方表层岩溶带及其对岩溶水的调蓄功能[J]. 中国岩溶, 2001, 20(2):106-110.

    Google Scholar

    JIANG Zhongcheng, WANG Ruijiang, PEI Jianguo, HE Shiyi. Epikarst zone in south China and its regulation function to karst water[J]. Carsologica Sinica, 2001, 20(2):106-110.

    Google Scholar

    [16] 王荣, 蔡运龙. 西南喀斯特地区退化生态系统整治模式[J]. 应用生态学报, 2010, 21(4): 1070-1080.

    Google Scholar

    WANG Rong, CAI Yunlong. Management modes of degraded ecosystem in southwest karst area of China[J].Chinese Journal of Applied Ecology, 2010, 21(4): 1070-1080.

    Google Scholar

    [17] Sirimarco X, Barral M P, Villarino S H, et al. Water regulation by grasslands: a global meta‐analysis[J]. Ecohydrology, 2018:e1934.

    Google Scholar

    [18] 王世杰, 李阳兵, 李瑞玲. 喀斯特石漠化的形成背景、演化与治理[J]. 第四纪研究, 2003, 23(6): 657-666.

    Google Scholar

    WANG Shijie, LI Yangbing, LI Ruiling. Karst rocky desertification: Formation background, evolution and comprehensive taming [J].Quaternary Sciences, 2003, 23(6): 657-666.

    Google Scholar

    [19] Liu B J, Chen C L, Lian Y Q, Chen J F,Chen X H. Long-term change of wet and dry climatic conditions in the southwest karst area of China[J]. Global & Planetary Change, 2015, 127:1-11.

    Google Scholar

    [20] 张志才, 陈喜, 王文, 石朋. 贵州降雨变化趋势与极值特征分析[J], 地球与环境, 2007, 35(4): 351-356

    Google Scholar

    ZHANG Zhicai, CHEN Xi, WANG Wen, SHI Peng. Analysis of rainfall trend and extreme Events in Guizhou [J]. Earth and environment, 2007, 35(4): 351-356.

    Google Scholar

    [21] Intergovernmental Panel on Climate Change (IPCC), Climate Change 2013: The Physical Science Basis 4 [R], 15, 2013.

    Google Scholar

    [22] Arora V. Modeling vegetation as a dynamic component in soil-vegetation-atmosphere transfer schemes and hydrological models[J]. Reviews of Geophysics, 2002, 40:3-1-3-26. doi: 10.1029/2001rg000103

    CrossRef Google Scholar

    [23] Zhu Z C, Piao S, Myneni R B, Huang M T,Zeng Z Z,Canadell J G,Ciais P,Sitch S,Friedlingstein P,Arneth A,Cao C X,Chen L,Kato E,Koven C,Li Y, Lian X,Liu Y W,Liu R G,Mao J F,Pan Y Z,Peng S S,Penuelas J,Poulter B,Pugh T A M,Stocher B D,Viovy N,Wang X H,Wang Y P,Xiao Z Q ,Yang H,Zaehle S Zeng N. Greening of the earth and its drivers[J]. Nature Climate Change, 2016, 6(8):791-795. doi: 10.1038/nclimate3004

    CrossRef Google Scholar

    [24] Christopher R Schwalm, William R L Anderegg, Anna M Michalak, Joshua B Fisher, Franco Biondi, George Koch, Marcy Litvak, Kiona Ogle, John D Shaw, Adam Wolf, Deborah N Huntzinger, Kevin Schaefer, Robert Cook, Yaxing Wei, Yuanyuan Fang, Daniel Hayes, Maoyi Huang, Atul Jain, Hanqin Tian. Global patterns of drought recovery[J]. Nature, 2017, 548(7666):202-205. doi: 10.1038/nature23021

    CrossRef Google Scholar

    [25] Doughty C E, Metcalfe D B, Girardin C A J, Amezquita F F, Cabrera D G, Huasco W H, Silva-Espejo Araujo-Murakami A. Araujo-Murakami A. da Costa M C. Drought impact on forest carbon dynamics and fluxes in Amazonia[J]. Nature, 2015, 519(7541):78-82. doi: 10.1038/nature14213

    CrossRef Google Scholar

    [26] 陈喜, 张志才, 容丽, 等. 西南喀斯特地区水循环过程及其水文生态效应[M]. 北京: 科学出版社, 2014

    Google Scholar

    CHEN Xi, ZHANG Zhicai, RONG Li, et al. Water circulation process and its hydrological and ecological effects in karst areas of Southwest China [M]. Beijing: Science Press, 2014.

    Google Scholar

    [27] 邓艳. 西南典型峰丛洼地岩溶关键带植被-表层岩溶水的耦合过程[D]. 武汉: 中国地质大学, 2018.

    Google Scholar

    DENG Yan. Coupling process between vegetation and epikarst water in karst critical zone, southwest typical peak-cluster depression area[D].Wuhan: China University of Geosciences, 2018

    Google Scholar

    [28] RONF Li, CHEN Xi, CHEN Xunhong, WANG Shijie, DU Xuelian. Isotopic analysis of water sources of mountainous plant uptake in a karst plateau of southwest China[J]. Hydrological Processes, 2011, 25(23):3666-3675. doi: 10.1002/hyp.8093

    CrossRef Google Scholar

    [29] Nie Y P, Chen H S, Wang K L, Ding Y L. Rooting characteristics of two widely distributed woody plant species growing in different karst habitats of Southwest China[J]. Plant Ecology, 2014, 215(10):1099-1109. doi: 10.1007/s11258-014-0369-0

    CrossRef Google Scholar

    [30] 罗东辉, 夏婧, 袁婧薇, 张忠华, 祝介东, 倪健. 我国西南山地喀斯特植被的根系生物量初探[J]. 植物生态学报, 2010, 34(5): 611-618.

    Google Scholar

    LUO Donghui, XIA Jing, YUAN Jingwei, ZHANG Zhonghua, ZHU Jiedong, NI Jian. Root biomass of karst vegetation in a mountainous area of Southwestern China[J]. Chinese Journal of Plant Ecology, 2010, 34 (5): 611–618.

    Google Scholar

    [31] 司彬, 姚小华, 任华东, 李生, 何丙辉. 黔中喀斯特植被自然演替过程中物种组成及多样性研究:以贵州省普定县为例[J]. 林业科学研究, 2008, 21(5):81-86.

    Google Scholar

    SI Bin, YAO Xiaohua, REN Huandong, LI Sheng, HE Binghui. Species composition and diversity in the process of natural succession of karst vegetation in central Guizhou: Case study of Puding country in Guizhou[J]. Forest Research, 2008, 21(5):81-86.

    Google Scholar

    [32] 杨大文, 雷慧闽, 丛振涛. 流域水文过程与植被相互作用研究现状评述[J].水力学报, 2010, 41(10): 1142-1149.

    Google Scholar

    YANG Dawen, LEI Huimin, CONG Zhentao. Overview of the research status in interaction between hydrological processes and vegetation in catchment[J]. Journal of Hydraulic Engineering, 2010, 41(10): 1142-1149.

    Google Scholar

    [33] Worthington S R H. Types of permeability development in limestone aquifers in Britain[C], Geophysical Research Abstracts, 11, EGU 2009.

    Google Scholar

    [34] Zhang Zhicai, Chen Xi, Ghadouani Anas, Peng Shi. Modelling hydrological processes influenced by soil, rock and vegetation in a small karst basin of Southwest China[J]. Hydrological Processes, 2011, 25:2456-2470. doi: 10.1002/hyp.8022

    CrossRef Google Scholar

    [35] Cai Lianbi, Chen Xi, Huang Lichao, Keith Smettem. Runoff change induced by vegetation recovery and climate change over carbonate and non-carbonate areas in the karst region of South-west China[J]. Journal of Hydrology, 2022, 604, 1272:31. doi: 10.1016/j.jhydrol.2021.127231

    CrossRef Google Scholar

    [36] 曹建华, 王福星, 黄俊发, 黄基富, 王晶. 桂林地区石灰岩表面生物岩溶溶蚀作用研究[J]. 中国岩溶, 1993, 12(1):11-22.

    Google Scholar

    CAO Jianhua, WANG Fuxing, HUANG Junfa, HUANG Jifu, WANG Jin. The erosion action of biokarst on limestone in Guilin area[J]. Carsologica Sinica, 1993, 12(1):11-22.

    Google Scholar

    [37] 覃小群, 蒋忠诚. 表层岩溶带及其水循环的研究进展与发展方向[J]. 中国岩溶, 2005, 24(3):250-254. doi: 10.3969/j.issn.1001-4810.2005.03.015

    CrossRef Google Scholar

    QIN Xiaoqun, JIANG Zhongcheng. A Reviewon recent advances and perspective in Epikarst water study[J]. Carsologica Sinica, 2005, 24(3):250-254. doi: 10.3969/j.issn.1001-4810.2005.03.015

    CrossRef Google Scholar

    [38] 李玉辉, 梁永宁. 滇中路南石林的发育年代[J]. 中国区域地质, 1998, 17(1):44-51.

    Google Scholar

    LI Yuhui, LIANG Yongning. The ages of development of the lunanstone forest in central Yunnan[J]. Regional Geologyod China, 1998, 17(1):44-51.

    Google Scholar

    [39] 袁道先, 蔡桂鸿, 岩溶环境学[M]. 重庆, 重庆科技出版社, 1983, 59-71.

    Google Scholar

    [40] 喻理飞, 朱守谦, 叶镜中, 魏鲁明, 陈正仁. 退化喀斯特森林自然恢复评价研究[J]. 林业科学, 2000, 36(6):12-19. doi: 10.3321/j.issn:1001-7488.2000.06.002

    CrossRef Google Scholar

    YU Lifei, ZHU Shouqian, YE Jingzhong, WEI Luming, CHEN Zhengren. A study on evaluation of natural restoration for degraded karst forest[J]. Scientia Silvae Sinicae, 2000, 36(6):12-19. doi: 10.3321/j.issn:1001-7488.2000.06.002

    CrossRef Google Scholar

    [41] Ford D C, Williams P W. Karst Geomorphology and Hydrology[M]. CRC Press, Boca Raton, Fla, 1989.

    Google Scholar

    [42] Hasenmueller E A, Gu X, Weitzman J N,Adamsc T S.Stinchcomb G E,Eissenstatc D M,Drohan P J,Brantley S L,Kaye J P Weathering of rock to regolith: The activity of deep roots in bedrock fractures[J]. Geoderma, 2017, 300:11-31. doi: 10.1016/j.geoderma.2017.03.020

    CrossRef Google Scholar

    [43] 宋林华. 喀斯特地貌研究进展与趋势[J]. 地理科学进展, 2000, 9(3):193-202. doi: 10.3969/j.issn.1007-6301.2000.03.001

    CrossRef Google Scholar

    SONG Linhua. Progress and trend of karst geomorphology study[J]. Progress in Geography, 2000, 9(3):193-202. doi: 10.3969/j.issn.1007-6301.2000.03.001

    CrossRef Google Scholar

    [44] Van Breemen N, Lundström U, Jongmans A G. Do plant drive podsolization via rockeating mycorrhizal fungi?[J]. Geoderma, 2000, 94:163-171. doi: 10.1016/S0016-7061(99)00050-6

    CrossRef Google Scholar

    [45] 樊维. 裂隙岩体植物根劈作用机理研究[D]. 重庆: 重庆交通大学, 2016

    Google Scholar

    FAN Wei. The mechanism study of rock-broken prodess by root-growth of plant in fractured rock[J]. Chongqing: Chongqing Jiaotong University, 2016.

    Google Scholar

    [46] Lambers H, Mougel C, Jaillard B, Hinsinger P. Plant-microbe-soil interactions in the rhizosphere: An evolutionary perspective[J]. Plant Soil, 2009, 321:83-115. doi: 10.1007/s11104-009-0042-x

    CrossRef Google Scholar

    [47] Fleurant C, Tucker G E, Viles H A. Modelling cockpit karst landforms[J]. The Geological Society, London, Special Publications, Geological Society of London, 2008, 296: 47-62.

    Google Scholar

    [48] Detwiler R L, Rajaram H. Predicting dissolution patterns in variable aperture fractures: Evaluation of an enhanced depth-averaged computational model[J]. Water Resources Research, 2007, 43(4):1-14.

    Google Scholar

    [49] 刘再华, Dreybrodt W. DBL理论模型及方解石溶解、沉积速率预报[J]. 中国岩溶, 1998, 17(1):1-7.

    Google Scholar

    LIU Zaihua, W. Dreybrodt. The DBL model and prediction of calcitedissolution/precipitation rates[J]. Carsologica Sinica, 1998, 17(1):1-7.

    Google Scholar

    [50] Wang L, Cardenas M B. Linear permeability evolution of expanding conduits due to feedback between flow and fast phase change[J]. Geophysical Research Letters, 2017, 44(9): 4116-4123.

    Google Scholar

    [51] SUN Liwei, NIU Jie, Hu B X, WU Chuanhao, DAI Heng. An efficient approximation of non-Fickian transport using a time-fractional transient storage model[J]. Advances in Water Resources, 2020, 135: 103486.

    Google Scholar

    [52] 毛亮, 于青春, 王敬霞, 李洪辉, 赵帅维, 贾梅兰. 降雨对裂隙型岩溶含水系统演化影响的数值模拟研究[J]. 中国岩溶, 2017, 36(1):42-48. doi: 10.11932/karst20170105

    CrossRef Google Scholar

    MAO Liang, YU Qingchun, WANG Jingxia, LI Honghui, ZHAO Shuaiwei, JIA Meilan. Numerical simulation of precipitation impact on fractured karst system evolution[J]. Carsologica Sinica, 2017, 36(1):42-48. doi: 10.11932/karst20170105

    CrossRef Google Scholar

    [53] 王云, 于青春, 薛亮. 溶蚀作用下古岩溶盆地系统中介质场演化模拟[J]. 现代地质, 2010, 24(5):1007-1015. doi: 10.3969/j.issn.1000-8527.2010.05.024

    CrossRef Google Scholar

    WANG Yun, YU Qingchun, XUE Liang. Simulation of the media field evolution in palaeo-karst basin system under the dissolution[J]. Geoscience, 2010, 24(5):1007-1015. doi: 10.3969/j.issn.1000-8527.2010.05.024

    CrossRef Google Scholar

    [54] Liedl Rudolf, Sauter Martin, Hückinghaus Dirk, Clemens Torsten, Teutsch Georg. Simulation of the development of karst aquifers using a coupled continuum pipe flow model[J]. Water Resources Research, 2003, 39(3):WR001206.

    Google Scholar

    [55] Bauer S, Liedl R, Sauter M. Modeling the influence of epikarst evolution on karst aquifer genesis: A time- variant recharge boundary condition for joint karst-epikarst development[J]. Water Resources Research, 2005, 41:W09416.

    Google Scholar

    [56] 吴宏伟. 大气–植被–土体相互作用: 理论与机理[J]. 岩土工程学报, 2017, 39(1):1-47. doi: 10.11779/CJGE201701001

    CrossRef Google Scholar

    WU Hongwei. Atmosphere-plant-soil interactions: theories and mechanisms[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1):1-47. doi: 10.11779/CJGE201701001

    CrossRef Google Scholar

    [57] 陈喜, 宋琪峰, 高满, 孙一萌. 植被-土壤-水文相互作用及生态水文模型参数的动态表述[J]. 北京师范大学学报(自然科学版), 2016, 52: 362-368.

    Google Scholar

    CHEN Xi, SONG Qifeng, GAO Man, SUN Yimeng. Vegetation-soil-hydrology interaction and expression of parameter variations in ecohydrological models[J]. Journal of Beijing Normal University(natural science),2016, 52: 362-368.

    Google Scholar

    [58] Hartmann A, Goldscheider N, Wagener T, Lange J, Weiler M. Karst water resources in a changing world: Review of hydrological modelling approaches[J]. Reviews of Geophysics, 2015, 52:218-242.

    Google Scholar

    [59] White W B. Karst hydrology: Recent developments and open questions[J]. Engineering Geology, 2002, 65:85-105. doi: 10.1016/S0013-7952(01)00116-8

    CrossRef Google Scholar

    [60] Hartmann A,Weiler M,Wagener T,Lange J,Kralik M,Humer F,Mizyed N,Rimmer A,Barberá J A, Andreo B,Butscher C,Huggenberger P.Process-based karst modelling to relate hydrodynamic and hydrochemical characteristics to system properties[J]. Hydrology and Earth System Sciences, 2013, 17(8): 3305-3321.

    Google Scholar

    [61] Chen Xi, Zhang Zhicai, Soulsby Chris, Cheng Qinbo, Binley Andrew, Jiang Rui, Tao Min. Characterizing the heterogeneity of karst critical zone and its hydrological function: An integrated approach[J]. Hydrological Processes, 2018, 32:2932-2946.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Article Metrics

Article views(3621) PDF downloads(871) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint