China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2024 Vol. 48, No. 4
Article Contents

ZHANG Ji-Wei, TAN Hui. 2024. Quasi-two-dimensional joint inversion of the data from the controlled source audio-frequency magnetotellurics and the microtremor survey. Geophysical and Geochemical Exploration, 48(4): 1094-1102. doi: 10.11720/wtyht.2024.1477
Citation: ZHANG Ji-Wei, TAN Hui. 2024. Quasi-two-dimensional joint inversion of the data from the controlled source audio-frequency magnetotellurics and the microtremor survey. Geophysical and Geochemical Exploration, 48(4): 1094-1102. doi: 10.11720/wtyht.2024.1477

Quasi-two-dimensional joint inversion of the data from the controlled source audio-frequency magnetotellurics and the microtremor survey

  • Both the controlled source audio-frequency magnetotellurics (CSAMT) and the microtremor survey exhibit promising application prospectsunder strong urban interference. However, single geophysical inversion methods are challenged by a multiplicity of solutions. To achieve the complementary advantages of different geophysical methods, and address the lateral discontinuity of single-point inversion, this studyexplored the quasi-two-dimensional joint inversion of the CSAMTand microtremor survey data. It enabled the joint inversionby introducing a lateral constraint matrix into the objective function for joint inversion and employing the limited-memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) algorithm. The reliability and effectiveness of the joint inversion were verified using the inversion example of synthetic data from theoretical models. The results show that compared to single data inversion, the joint inversion can effectively improve the accuracy of inversion results, with the resistivity model more consistent with theshear-wave velocity structure. Moreover, lateral constraints can effectively reduce the discontinuity of the physical parameters of adjacentsurvey points. The quasi-two-dimensional joint inversion with lateral constraints enhances the inversion reliability by obtaining more reasonable profile results of physical parameters and structures with the efficiency of single-point inversion.
  • 加载中
  • [1] 丁立锋, 徐佩芬, 凌苏群, 等.微动勘探方法探测林南仓煤矿岩浆岩侵入体[J].煤炭科学技术, 2010, 38(7):100-103.

    Google Scholar

    Ding L F, Xu P F, Ling S Q, et al.Micro seismic exploration method applied to detect igneous magma intrusion in Linnancang Mine[J].Coal Science and Technology, 2010, 38(7):100-103.

    Google Scholar

    [2] 刘永勤, 廖远国, 李学专, 等.微动探测技术在轨道交通工程勘察中的应用研究[J].工程勘察, 2010, 38(S1):1-11.

    Google Scholar

    Liu Y Q, Liao Y G, Li X Z, et al.The application study of microtremor survey technology in rail transport engineering survey[J].Geotechnical Investigation & Surveying, 2010, 38(S1):1-11.

    Google Scholar

    [3] 高艳华, 黄溯航, 刘丹, 等.微动探测技术及其工程应用进展[J].科学技术与工程, 2018, 18(23):146-155.

    Google Scholar

    Gao Y H, Huang S H, Liu D, et al.Microtremor detection technology and its new progress in engineering application[J].Science Technology and Engineering, 2018, 18(23):146-155.

    Google Scholar

    [4] 底青云, 王若.可控源音频大地电磁数据正反演及方法应用[M].北京:科学出版社, 2008.Di Q Y, Wang R.Controlled source audio-frequency magneto tellurics[M].Beijing:Science Press, 2008.

    Google Scholar

    [5] 汤井田, 何继善.可控源音频大地电磁法及其应用[M].长沙:中南大学出版社, 2005.Tang J T, He J S.Controlled source audio magnetotelluric method and its application[M].Changsha:Central South University Press, 2005.

    Google Scholar

    [6] 孙勇军, 徐佩芬, 凌甦群, 等.微动勘查方法及其研究进展[J].地球物理学进展, 2009, 24(1):326-334.

    Google Scholar

    Sun Y J, Xu P F, Ling S Q, et al.Microtremor survey method and its progress[J].Progress in Geophysics, 2009, 24(1):326-334.

    Google Scholar

    [7] Toksöz M N, Lacoss R T.Microseisms:Mode structure and sources[J].Science, 1968, 159(3817):872-873.

    Google Scholar

    [8] Vozoff K, Jupp D L B.Joint inversion of geophysical data[J].Geophysical Journal of the Royal Astronomical Society, 2007, 42(3):977-991.

    Google Scholar

    [9] 彭淼.大地电磁与天然地震数据联合反演研究[D].北京:中国地质大学(北京), 2012.Peng M.Joint inversion of magnetotelluric and teleseismic data[D].Beijing:China University of Geosciences, 2012.

    Google Scholar

    [10] 吴萍萍.大地电磁和地震面波频散数据联合反演研究[D].北京:中国地质大学(北京), 2019.Wu P P.Joint inversion of magnetotelluric and seismic surface wave dispersion datasets[D].Beijing:China University of Geosciences, 2019.

    Google Scholar

    [11] Gao G Z, Abubakar A, Habashy T M.Joint petrophysical inversion of electromagnetic and full-waveform seismic data[J].Geophysics, 2012, 77(3), 3-18.

    Google Scholar

    [12] 周丽芬.大地电磁与地震数据二维联合反演研究[D].北京:中国地质大学(北京), 2012.Zhou L F.Two dimensional joint inversion of MT and seismic data[D].Beijing:China University of Geosciences, 2012.

    Google Scholar

    [13] Moorkamp M, Roberts A W, Jegen M, et al.Verification of velocity-resistivity relationships derived from structural joint inversion with borehole data[J].Geophysical Research Letters, 2013, 40(14):3596-3601.

    Google Scholar

    [14] 李桐林, 张镕哲, 朴英哲.大地电磁测深与地震初至波走时交叉梯度反演[J].吉林大学学报:地球科学版, 2015, 45(3):952-961.

    Google Scholar

    Li T L, Zhang R Z, Pak Y Z.Joint inversion of magnetotelluric and first-arrival wave seismic traveltime with cross-gradient constraints[J].Journal of Jilin University:Earth Science Edition, 2015, 45(3):952-961.

    Google Scholar

    [15] Auken E, Christiansen A V.Layered and laterally constrained 2D inversion of resistivity data[J].Geophysics, 2004, 69(3):752-761.

    Google Scholar

    [16] 王颖.磁共振与瞬变电磁横向约束联合反演方法研究[D].长春:吉林大学, 2016.Wang Y.Study on joint and laterally constrained inversion of MRS and TEM data[D].Changchun:Jilin University, 2016.

    Google Scholar

    [17] Auken E, Thomsen P, Sørensen K.Lateral constrained inversion (LCI) of profile oriented data - The resistivity case[C]//Bochum:Proceedings of 6th EAGE/EEGS Meeting, 2000 , EL06:124-142.

    Google Scholar

    [18] Monteiro Santos F A.1-D laterally constrained inversion of EM34 profiling data[J].Journal of Applied Geophysics, 2004, 56(2):123-134.

    Google Scholar

    [19] Auken E , Christiansen A V , Jacobsen L , et al.Laterally constrained 1D:Inversion of 3D TEM data[C]//Symposium on the Application of Geophysics to Engineering and Environmental Problems, 2005:514-518.

    Google Scholar

    [20] Siemon B, Auken E, Christiansen A V.Laterally constrained inversion of helicopter-borne frequency-domain electromagnetic data[J].Journal of Applied Geophysics, 2009, 67(3):259-268.

    Google Scholar

    [21] 蔡晶, 齐彦福, 殷长春.频率域航空电磁数据的加权横向约束反演[J].地球物理学报, 2014, 57(3):953-960.

    Google Scholar

    Cai J, Qi Y F, Yin C C.Weighted Laterally-constrained inversion of frequency-domain airborne EM data[J].Chinese Journal of Geophysics, 2014, 57(3):953-960.

    Google Scholar

    [22] 殷长春, 邱长凯, 刘云鹤, 等.时间域航空电磁数据加权横向约束反演[J].吉林大学学报:地球科学版, 2016, 46(1):254-261.

    Google Scholar

    Yin C C, Qiu C K, Liu Y H, et al.Weighted laterally-constrained inversion of time-domain airborne electromagnetic data[J].Journal of Jilin University:Earth Science Edition, 2016, 46(1):254-261.

    Google Scholar

    [23] 考夫曼, 凯勒.频率域和时间域电磁测深[M].王建谋, 译.北京:地质出版社, 1987.Kaufman A A , Keller G V.Frequency and time domain electromagnetic sounding [M].Wang J M, translate.Beijing:Geological Publishing House, 1987.

    Google Scholar

    [24] Schwab F, Knopoff L.Surface-wave dispersion computations[J].Bulletin of the Seismological Society of America, 1970, 60(2):321-344.

    Google Scholar

    [25] Egbert G D, Kelbert A.Computational recipes for electromagnetic inverse problems[J].Geophysical Journal International, 2012, 189(1):251-267.

    Google Scholar

    [26] Jackson D D.The use of a priori data to resolve non-uniqueness in linear inversion[J].Geophysical Journal International, 1979, 57(1):137-157.

    Google Scholar

    [27] 桂兵.可控源音频大地电磁法张量数据二维反演研究[D].北京:中国地质大学(北京), 2015.Gui B.Research of 2D CSAMT tensor data inversion[D].Beijing:China University of Geosciences, 2015.

    Google Scholar

    [28] 方洪健.地震体波面波联合反演研究及应用[D].合肥:中国科学技术大学, 2017.Fang H J.Joint inversion of seismic body and surface wave data:Methods and applications[D].Hefei:University of Science and Technology of China, 2017.

    Google Scholar

    [29] 宓彬彬.复杂浅地表弹性介质面波分析方法研究[D].武汉:中国地质大学, 2018.Mi B B.Surface-wave analysis in complicated near-surface elastic media[D].Wuhan:China University of Geosciences, 2018.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(86) PDF downloads(4) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint