China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2023 Vol. 47, No. 1
Article Contents

WANG Yun-Peng, LIU Xiao-Gang, QIU Xue-Feng, SONG Ying. 2023. Evaluation of the external coincidence precision of the aeromagnetic survey system. Geophysical and Geochemical Exploration, 47(1): 129-134. doi: 10.11720/wtyht.2023.2682
Citation: WANG Yun-Peng, LIU Xiao-Gang, QIU Xue-Feng, SONG Ying. 2023. Evaluation of the external coincidence precision of the aeromagnetic survey system. Geophysical and Geochemical Exploration, 47(1): 129-134. doi: 10.11720/wtyht.2023.2682

Evaluation of the external coincidence precision of the aeromagnetic survey system

  • The precision evaluation of an aeromagnetic survey system is an important part of a magnetic survey. This study obtained airborne and ground magnetic data through flight experiments in a certain survey area of Inner Mongolia. Then, the high-precision ground magnetic survey data was upward-continued to the height of the flight course using the interpolation-iteration and equivalent source methods. Finally, the external coincidence precision of the aeromagnetic survey system was evaluated by comparison with the aeromagnetic survey data. The precision evaluation results of the two continuation methods are better than 5 nT, reflecting the actual precision level of the aeromagnetic survey system. Therefore, the research methods in this study can provide references for the evaluation of the external coincidence precision of an aeromagnetic survey system and can also be used for online calibration of the scale factor, deviation, and other parameters of newly developed aerial magnetometers.
  • 加载中
  • [1] 刘晓刚, 姬剑锋, 管斌, 等. 基于重复测线不符值的航空磁力矢量仪飞行试验数据精度评估[J]. 地球物理学进展, 2020, 35(2):433-437.

    Google Scholar

    [2] Liu X G, Ji J F, Guan B, et al. Precision evaluation of flying experimentation data of the airborne vector geomagnetic measurement based on discrepancy of repeat lines[J]. Progress in Geophysics, 2020, 35(2):433-437.

    Google Scholar

    [3] 刘晓刚, 肖云, 管斌, 等. 航空磁力矢量仪初样机飞行试验数据精度评估[C]// 第十三届国家安全地球物理专题研讨会, 2017.

    Google Scholar

    [4] Liu X G, Xiao Y, Guan B, et al. Precision evaluation of the flying experimentation data of the initial prototype of airborne vector geomagnetic measurement[C]// 13rd National Security Geophysical Symposium, 2017.

    Google Scholar

    [5] 徐世浙. 位场延拓的积分—迭代法[J]. 地球物理学报, 2006, 49(4):1176-1182.

    Google Scholar

    [6] Xu S Z. The integral-iteration method for continuation of potential fields[J]. Chinese J.Geophys., 2006, 49(4):1176-1182.

    Google Scholar

    [7] 徐世浙. 迭代法与FFT法位场向下延拓效果的比较[J]. 地球物理学报, 2007, 50(1):285-289.

    Google Scholar

    [8] Xu S Z. A comparison of effects between the iteration method and FFT for downward continuation of potential fields[J]. Chinese J.Geophys., 2007, 50(1):285-289.

    Google Scholar

    [9] 徐世浙, 余海龙. 位场曲化平的插值—迭代法[J]. 地球物理学报, 2007, 50(6):1811-1815.

    Google Scholar

    [10] Xu S Z, Yu H L. The interpolation-iteration method for potential field continuation from undulating surface to plane[J]. Chinese J.Geophys., 2007, 50(6):1811-1815.

    Google Scholar

    [11] Dampney N G. The equivalent source technique[J]. Geophysics, 1969, 34(1):39-53.

    Google Scholar

    [12] Hansen R O, Miyazaki Y. Continuation of potential fields between arbitrary surfaces[J]. Geophysics, 1984, 49(6):787-795.

    Google Scholar

    [13] 王万银, 潘作枢, 李家康. 三维高精度重磁位场曲面延拓方法[J]. 物探与化探, 1991, 15(6):415-422.

    Google Scholar

    [14] Wang W Y, Pan Z S, Li J K. Continuation methods for curved surface of the three-dimensional high-precision gravity and magnetic potential field[J]. Geophysical and Geochemical Exploration, 1991, 15(6):415-422.

    Google Scholar

    [15] 徐世浙, 沈晓华, 邹乐君, 等. 将航磁异常从飞行高度向下延拓至地形线[J]. 地球物理学报, 2004, 47(6):1127-1130.

    Google Scholar

    [16] Xu S Z, Shen X H, Zou L J, et al. Downward continuation of aeromagnetic anomaly from flying altitude to terrain[J]. Chinese J.Geophys., 2004, 47(6):1127-1130.

    Google Scholar

    [17] 王万银, 刘金兰, 邱之云, 等. 频率域偶层位曲面位场处理和转换方法研究[J]. 地球物理学报, 2009, 52(10):2652-2665.

    Google Scholar

    [18] Wang W Y, Liu J L, Qiu Z Y. et al. The research of the frequency domain dipole layer method for the processing and transformation of potential field on curved surface[J]. Chinese J.Geophys., 2009, 52(10):2652-2665.

    Google Scholar

    [19] 吴晓平. 局部重力场的点质量模型[J]. 测绘学报, 1984, 13(4):250-258.

    Google Scholar

    [20] Wu X P. Point-mass model of local gravity field[J]. Acta Geodaetica et Cartographica Sinica, 1984, 13(4):250-258.

    Google Scholar

    [21] 庞旭林. 航磁异常数据曲面延拓等效源法技术研究[D]. 北京: 中国地质大学(北京), 2012.

    Google Scholar

    [22] Pang X L. Research on reduction of aeromagnetic anomalies by means of equivalent source technology[D]. Beijing: China University of Geosciences(Beijing), 2012.

    Google Scholar

    [23] 李端. 基于等效源技术的重磁场重构方法[D]. 北京: 中国地质大学(北京), 2018.

    Google Scholar

    [24] Li D. Reconstruction method of gravity and magnetic fields by equivalent sources[D]. Beijing: China University of Geosciences(Beijing), 2018.

    Google Scholar

    [25] 王云鹏, 刘晓刚, 肖云, 等. 航磁标量和矢量数据向下延拓的改进插值—迭代法[C]// 第七届高分辨率对地观测学术年会, 2020.

    Google Scholar

    [26] Wang Y P, Liu X G, Xiao Y, et al. Improved interpolation-iteration method for downward continuation of aeromagnetic scalar and vector data[C]// 7th China High Resolution Earth Observation Conference, 2020.

    Google Scholar

    [27] 铁旭. 三元分次Lagrange插值[D]. 大连: 辽宁师范大学, 2016.

    Google Scholar

    [28] Tie X. Trivariate grated lagrange interpolation[D]. Dalian: Liaoning Normal University, 2016.

    Google Scholar

    [29] Nakatsuka T, Okuma S. Reduction of magnetic anomaly observations from helicopter surveys at varying elevations[J]. Geophysical Exploration, 2006, 37(1):121-128.

    Google Scholar

    [30] 边刚, 刘雁春, 卞光浪, 等. 海洋磁力测量中多站地磁日变改正值计算方法研究[J]. 地球物理学报, 2009, 52(10):2613-2618.

    Google Scholar

    [31] Bian G, Liu Y C, Bian G L, et al. Research on computation method of multi-station diurnal variation correction in marine magnetic surveys[J]. Chinese J.Geophys., 2009, 52(10):2613-2618.

    Google Scholar

    [32] 彭飞, 张启国, 罗深荣. 调和分析方法在海洋磁力测量日变改正中的应用[J]. 海洋测绘, 2015, 35(5):38-42.

    Google Scholar

    [33] Peng F, Zhang Q G, Luo S R. Application of harmonic analysis method applied in diurnal correction of marine magnetic surveys[J]. Hydrographic Surveying and Charting, 2015, 35(5):38-42.

    Google Scholar

    [34] 刘晓刚, 徐婧林, 张素琴, 等. 地磁日变数据确定中顾及纬度和经度方向影响的双因子定权方法[J]. 武汉大学学报:信息科学版, 2020, 45(10):1547-1554.

    Google Scholar

    [35] Liu X G, Xu J L, Zhang S Q, et al. Bifactor weight determination method considering the influence of latitude and longitude in the calculation of diurnal variation of geomagnetic data[J]. Geomatics and Information Science of Wuhan Vniversity, 2020, 45(10):1547-1554.

    Google Scholar

    [36] Liu X G, Liu Q, Wang Y P, et al. Weight factor determination of reverse distance weighting method in computation of geomagnetic diurnal variation data[C]// Proceedings of the 7th China High Resolution Earth Observation Conference (CHREOC 2020),2022.

    Google Scholar

    [37] Tolles W E. Compensation of induced magnetic fields in MAD equipped aircraft[R]. New York: Airborne Instruments Lab.Inc.,1943.

    Google Scholar

    [38] Tolles W E, Lawson J D. Magnetic compensation of MAD equipped aircraft[R]. New York: Airborne Instruments Lab.Inc.,1950.

    Google Scholar

    [39] 管志宁. 地磁场与磁力勘探[M]. 北京: 地质出版社, 2005.

    Google Scholar

    [40] Guan Z N. Geomagnetic field and magnetic exploration[M]. Beijing: Geological Publishing House, 2005.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(951) PDF downloads(102) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint