| [1] |
童晓光, 张光亚, 王兆明, 等. 全球油气资源潜力与分布[J]. 石油勘探与开发, 2018, 45(4):727-736.
Google Scholar
|
| [2] |
Thong X G, Zhang G Y, Wang Z M, et al. Distribution and potential of global oil and gas resources[J]. Petroleum Exploration and Development, 2018, 45(4):727-736.
Google Scholar
|
| [3] |
康玉柱. 世界油气资源潜力及中国海外油气发展战略思考[J]. 天然气工业, 2013, 33(3):1-4.
Google Scholar
|
| [4] |
Kang Y Z. Status of world hydrocarbon resource potential and strategic thinking of overseas oil and gas projects for China[J]. Natural Gas Industry, 2013, 33(3):1-4.
Google Scholar
|
| [5] |
张宁宁, 何登发, 孙衍鹏, 等. 全球碳酸盐岩大油气田分布特征及其控制因素[J]. 中国石油勘探, 2014, 19(6):54-65.
Google Scholar
|
| [6] |
Zhang N N, He D F, Sun Y P, et al. Distribution patterns and controlling factors of giant carbonate rock oil and gas fields worldwide[J]. China Petroleum Exploration, 2014, 19(6):54-65.
Google Scholar
|
| [7] |
高利君, 李宗杰, 李海英, 等. 塔里木盆地深层岩溶缝洞型储层三维雕刻“五步法”定量描述技术研究与应用[J]. 物探与化探, 2020, 44(3):691-697.
Google Scholar
|
| [8] |
Gao L J, Li Z J, Li H Y, et al. The deep karst fissure and cavern reservoir in Tarimbasin carved in three dimensions: Research and application of “five-step method” quantitative description technology[J]. Geophysical and Geochemical Exploration, 2020, 44(3):691-697.
Google Scholar
|
| [9] |
屈雪峰, 赵中平, 雷启鸿, 等. 鄂尔多斯盆地合水地区延长组裂缝发育特征及控制因素[J]. 物探与化探, 2020, 44(2):262-270.
Google Scholar
|
| [10] |
Qu X F, Zhao Z P, Lei Q H, et al. Fracture development characteristics and controlling factors of Yanchang formation in Heshui area,Ordos Basin[J]. Geophysical and Geochemical Exploration, 2020, 44(2):262-270.
Google Scholar
|
| [11] |
Zhang X, Pang X, Jin Z, et al. Depositional model for mixed carbonate-clastic sediments in the Middle Cambrian Lower Zhangxia Formation,Xiaweidian,North China[J]. Advances in Geo-Energy Research, 2020, 4(1):29-42.
Google Scholar
|
| [12] |
胡勇, 于兴河, 陈恭洋, 等. 平均毛管压力函数分类及其在流体饱和度计算中的应用[J]. 石油勘探与开发, 2012, 39(6):733-738.
Google Scholar
|
| [13] |
Hu Y, Yu X H, Chen G Y, et al. Classification of the average capillary pressure function and its application in calculating fluid saturation[J]. Petroleum Exploration and Development, 2012, 39(6):733-738.
Google Scholar
|
| [14] |
Zhu L, Zhang C, Zhang Z, et al. High-precision calculation of gas saturation in organic shale pores using an intelligent fusion algorithm and a multi-mineral model[J]. Advances in Geo-Energy Research, 2020, 4(2):135-151.
Google Scholar
|
| [15] |
Aguilera R. Analysis of naturally fractured reservoirs from sonic and resistivity logs[J]. Journal of Petroleum Technology, 1974, 26(11):1233-1238.
Google Scholar
|
| [16] |
Honarpour M M, Sprunt E S, Hensel W M, et al. Compilation of electrical resistivity measurements performed by twenty-five laboratories[J]. Log Analysts, 1988, 29(1):13-29.
Google Scholar
|
| [17] |
Degraaf J D, Schipper B A, Smits R M M, et al. Measurements and evaluation of resistivity index curves[J]. Log Analysts, 1991, 32(5):583-595.
Google Scholar
|
| [18] |
Serra O. Formation microscanner image interpretation[C]// SMP 7028 Schlumberger Educational Service, 1989.
Google Scholar
|
| [19] |
Aguilera R F, Aguilera R. A triple porosity model for petrophysical analysis of naturally reservoirs[J]. Petrophysics, 2004, 45(2):157-166.
Google Scholar
|
| [20] |
Fleury M, Efnik M, Kalam M Z. Evaluation of water saturation from resistivity in a carbonate field from laboratory to logs[C]// CA 2004-22 the International Symposium of the Society of Core Analysts,2004.
Google Scholar
|
| [21] |
Kazatchenko E, Markov M, Mousatov A, et al. Simulation of the electrical resistivity of double porosity carbonate formations saturated with fluid mixtures[C]// SPWLA 46th Annual Logging Symposium, 2005.
Google Scholar
|
| [22] |
潘和平, 王兴, 樊政军, 等. 储层原始含油饱和度计算方法研究[J]. 现代地质, 2000, 14(4):451-453.
Google Scholar
|
| [23] |
Pan H P, Wang X, Fan Z J, et al. Computing method of reservoir originality oil saturation[J]. Geoscience, 2000, 14(4):451-453.
Google Scholar
|
| [24] |
Leverett M C. Capillary behaviors in porous solids[J]. Transactions of the AIME, 1941, 142(1):152-169.
Google Scholar
|
| [25] |
Purcell W R. Capillary pressures—Their measurement using mercury and the calculation of permeability therefrom[J]. Journal of Petroleum Technology, 1949, 1(2):39-48.
Google Scholar
|
| [26] |
司马立强, 李清, 杨毅, 等. 用J函数法求取碳酸盐岩储层饱和度方法探讨[J]. 岩性油气藏, 2014, 26(6):106-110.
Google Scholar
|
| [27] |
Sima L Q, Li Q, Yang Y, et al. Using J-function method to calculate saturation of carbonate reservoirs[J]. Lithologic Reservoirs, 2014, 26(6):106-110.
Google Scholar
|
| [28] |
郭晓博. 采用孔隙体积法计算平均毛管压力曲线[J]. 中南大学学报:自然科学版, 2012, 43(11):4514-4521.
Google Scholar
|
| [29] |
Guo X B. Calculation of average capillary pressure curve using hole volume[J]. Journal of Central South University:Science and Technology, 2012, 43(11):4514-4521.
Google Scholar
|
| [30] |
Rafiei Y, Motie M. Improved reservoir characterization by employing hydraulic flow unit classification in one of Iranian carbonate reservoirs[J]. Advances in Geo-Energy Research, 2019, 3(3):277-286.
Google Scholar
|
| [31] |
Zhang F, Zhang C. Evaluating the potential of carbonate sub-facies classification using NMR longitudinal over transverse relaxation time ratio[J]. Advances in Geo-Energy Research, 2021, 5(1):87-103.
Google Scholar
|
| [32] |
刘航宇, 田中元, 郭睿, 等. 复杂碳酸盐岩储层岩石分类方法研究现状与展望[J]. 地球物理学进展, 2017, 32(5):2057-2064.
Google Scholar
|
| [33] |
Liu H Y, Tian Z Y, Guo R, et al. Review and prospective of rock-typing for complex carbonate reservoirs[J]. Progress in Geophysics, 2017, 32(5):2057-2064.
Google Scholar
|
| [34] |
张萌, 乔占峰, 高计县, 等. 伊拉克哈法亚油田Mishrif组MB1-2亚段局限台地碳酸盐岩储层特征及评价[J]. 东北石油大学学报, 2020, 44(5):35-45.
Google Scholar
|
| [35] |
Zhang M, Qiao Z F, Gao J X, et al. Characteristics and evaluation of carbonate reservoirs in restricted platform in the MB1-2 Sub-Member of Mishrif formation,Halfaya oilfield,Iraq[J]. Journal of Northeast Petroleum University, 2020, 44(5):35-45.
Google Scholar
|
| [36] |
Lucia F J. Petrophysical parameters estimated from visual descriptions of carbonate rocks:A field classification of carbonate pore space[J]. Journal of Petroleum Technology, 1983, 35(3):629-637.
Google Scholar
|
| [37] |
Thomeer J H M. Introduction of a pore geometrical factor defined by the capillary pressure curve[J]. Journal of Petroleum Technology, 1960, 12(3):73-77.
Google Scholar
|
| [38] |
Buiting J J. Upscaling saturation-height technology for Arab carbonates for improved transition-zone characterization[J]. SPE Reservoir Evaluation and Engineering, 2011, 14(1):11-24.
Google Scholar
|
| [39] |
曹建胜, 武周. 牛顿法及带阻尼牛顿法的收敛域定理[J]. 南京师大学报:自然科学版, 1989, 12(2):24-27.
Google Scholar
|
| [40] |
Cao J S, Wu Z. Theorems of convergence region of Newton and Damped Newton methods[J]. Journal of Nanjing Normal University:Natural Science Edition, 1989, 12(2):24-27.
Google Scholar
|
| [41] |
张关根, 赖翔友. 麻皮效应对压汞资料的影响[J]. 石油勘探与开发, 1988, 17(6):84-86.
Google Scholar
|
| [42] |
Zhang G G, Lai X Y. The effect of pockmarks effect on mercury injection data[J]. Petroleum Exploration and Development, 1988, 17(6):84-86.
Google Scholar
|
| [43] |
Clerke E A, Mueller H W, Phillips E C, et al. Application of Thomeer Hyperbolas to decode the pore systems,facies and reservoir properties of the Upper Jurassic Arab D limestone,Ghawar filed,Saudi Arabia:A “Rosetta Stone” approach[J]. GeoArabia, 2008, 13(4):113-160.
Google Scholar
|
| [44] |
Clerke E A. Permeability,relative permeability,microscopic displacement efficiency and pore geometry of M_1 bimodal pore systems in Arab-D limestone[J]. Society of Petroleum Engineers, 2009, 14(3):524-531.
Google Scholar
|
| [45] |
Buiting J J. Fully Upscaled saturation-height functions for reservoir modeling based on Thomeer's method for analyzing capillary pressure measurements[C]// SPE 105139 Middle East Oil and Gas Show and Conference,2007.
Google Scholar
|
| [46] |
Buiting J J, Clerke E A. Permeability from porosimetry measurements: derivation for a tortuous and fractal tubular bundle[J]. Journal of Petroleum Science and Engineers, 2013, 108:267-278.
Google Scholar
|
| [47] |
高敏, 安秀华, 祗淑华, 等. 用核磁共振测井资料评价储层的孔隙结构[J]. 测井技术, 2000, 24(3):188-193.
Google Scholar
|
| [48] |
Gao M, An X H, Zhi S H, et al. Evaluating porous structure of reservoir with MRIL data[J]. Well Logging Technology, 2000, 24(3):188-193.
Google Scholar
|
| [49] |
Amaefule J O, Altunbay M. Enhanced reservoir description:Using core and log data to identify hydraulic (flow) units and predict permeability in uncored intervals/wells[C]// SPE 26436 Annual Technical Conference and Exhibition of the society,1993.
Google Scholar
|
| [50] |
Al-Qenae K J, Al-Thaqafi S H. New approach for the classification of rock typing using a new technique for iso-pore throat lines in Winland's plot[C]// SPE 177327 Annual Caspian Technical Conference and Exhibition,2015.
Google Scholar
|
| [51] |
欧阳健. 石油测井解释与储层描述[M]. 北京: 石油工业出版社,1994.
Google Scholar
|
| [52] |
Ouyang J. Well log interpretations and reservoir descriptions[M]. Beijing: Petroleum Industry Press,1994.
Google Scholar
|