China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2023 Vol. 47, No. 1
Article Contents

SUN Zheng, WANG Jun, DING Peng, TAN Xin. 2023. Amethod for determining the optimal height for upward continuation of gravity anomalies. Geophysical and Geochemical Exploration, 47(1): 162-170. doi: 10.11720/wtyht.2023.2356
Citation: SUN Zheng, WANG Jun, DING Peng, TAN Xin. 2023. Amethod for determining the optimal height for upward continuation of gravity anomalies. Geophysical and Geochemical Exploration, 47(1): 162-170. doi: 10.11720/wtyht.2023.2356

Amethod for determining the optimal height for upward continuation of gravity anomalies

  • Upward continuation is one of the important methods used to separate gravity anomalies. However, how to quantitatively select an appropriate upward-continuation height has always been a problem in the application of this method. Given this, this paper proposes a curvature analysis method based on the least square method to quantitatively determine a reasonable upward-continuation height. The steps of this method are as follows. Perform upward continuation to different adjacent heights for observation data, and then use the least square method to estimate the least square error of the upward continued value of adjacent heights.There is a maximum curvature in the least square curve of upward-continued values of all adjacent heights.At the point of the maximum curvature, the local anomalies are attenuated to the greatest extent, while the regional anomalies are preserved as far as possible. Therefore, this point can be approximately regarded as the optimal upward-continuation height. As indicated by tests using the data of a theoretical model, the method proposed in this paper can be used to qualitatively determine a suitable upward-continuation height, thus providing an important reference for the selection of upward-continuation height in practical applications.
  • 加载中
  • [1] 曾华霖. 重力场与重力勘探[M]. 北京: 地质出版社, 2005.;Zeng H L. Gravity field and gravity exploration[M]. Beijing: Geological Publishing House, 2005.

    Google Scholar

    [2] 曾华霖. 重力梯度测量的现状及复兴[J]. 物探与化探, 1999, 23(1):1-6.

    Google Scholar

    [3] Zeng H L. Present state and revival of gravity gradiometry[J]. Geophysical and Geochemical Exploration, 1999, 23(1):1-6.

    Google Scholar

    [4] 徐连喜. 三维重磁场积分延拓计算方法[J]. 物探与化探, 1988, 12(2):91-98.

    Google Scholar

    [5] Xu L X. Integral continuation method forthree-dimensional cravity and magnetic field[J]. Geophysical and Geochemical Exploration, 1988, 12(2):91-98.

    Google Scholar

    [6] 王明, 王林飞, 何辉. 匹配滤波技术分离重力场源[J]. 物探与化探, 2015, 39(S1):126-132.

    Google Scholar

    [7] Wang M, Wang L F, He H. The application of the matched filtering technology to the separation of gravity field sources[J]. Geophysical and Geochemical Exploration, 2015, 39(S1):126-132.

    Google Scholar

    [8] 黎海龙, 朱国器. 桂西地区重力场小波多重分解及地质意义[J]. 物探与化探, 2007, 31(5):465-468.

    Google Scholar

    [9] Li H L, Zhu G Q. The wavelet multiple decomposition of the gravity field in Guixi(Western Guangxi) area and its geological significance[J]. Geophysical and Geochemical Exploration, 2007, 31(5):465-468.

    Google Scholar

    [10] 郭良辉, 孟小红, 石磊, 等. 重力异常分离的相关法[J]. 地球物理学进展, 2008, 23(5):1425-1430.

    Google Scholar

    [11] Guo L H, Meng X H, Shi L, et al. The correlation method for gravity anomaly separation[J]. Progress in Geophysics, 2008, 23(5):1425-1430.

    Google Scholar

    [12] Gupta V K, Ramani N. Some aspects of regional-residual separation of gravity anomalies in a Precambrian terrain[J]. Geophysics, 1980, 45(9):1412-1426.

    Google Scholar

    [13] 陈玉. 解析法与随机法联合定量反演位场[J]. 物探与化探, 2002, 26(6):470-474.

    Google Scholar

    [14] Cen Y. The combination of analytical method and stochastic method for quantitative inversion of potential field[J]. Geophysical and Geochemical Exploration, 2002, 26(6):470-474.

    Google Scholar

    [15] 汪炳柱, 王硕儒. 二维位场向上延拓与向下延拓的样条函数法[J]. 物探化探计算技术, 1998, 20(2):125-129.

    Google Scholar

    [16] Wang B Z, Wang S R. Spline function methods for upward continuation and downward continuation of 2D potential field[J]. Computing Techniques for Geophysical and Geochemical Exploration, 1998, 20(2):125-129.

    Google Scholar

    [17] Kebede H, Alemu A, Fisseha S. Upward continuation and polynomial trend analysis as a gravity data decomposition,case study at Ziway-Shala basin,central Main Ethiopian rift[J]. Heliyon, 2020, 6(1):e03292.

    Google Scholar

    [18] Christopher J, Jong K L, Jay H K. Modeling errors in upward continuation for INS gravity compensation[J]. Journal of Geodesy, 2007, 81(5) :297-309.

    Google Scholar

    [19] Heikki V, Olaf A, Ari V. One-dimensional upward continuation of the ground magnetic field disturbance using spherical elementary current systems[J]. Earth,Planets and Space, 2003, 55(10):613-625.

    Google Scholar

    [20] 熊光楚. 矿产预测中重磁异常变换的若干问题二—向上延拓的作用及问题[J]. 物探与化探, 1992, 16(5):358-364.

    Google Scholar

    [21] Xiong G C. Some problems concerning the transformation of gravity and magnetic anomalies in prognosis of ore resources Ⅱ-The effect and problems of upward continuation[J]. Geophysical and Geochemical Exploration, 1992, 16(5):358-364.

    Google Scholar

    [22] Tariq A. Full-model wavenumber inversion:An emphasis on the appropriate wavenumber continuation[J]. Geophysics, 2016, 81(3) :R89-R98.

    Google Scholar

    [23] 熊光楚. 矿产预测中重磁异常变换的若干问题三—向上延拓高度与研究深度的关系[J]. 物探与化探, 1992, 16(6):452-455.

    Google Scholar

    [24] Xiong G C. Some problems concerning the transformation of gravity and magnetic anomalies in prognosis of ore resources Ⅲ-The relationship between the height of upward continuation and the depth of investigation[J]. Geophysical and Geochemical Exploration, 1992, 16(6):452-455.

    Google Scholar

    [25] 尹伟言, 陈真, 蒋涛, 等. 地面重力数据向上延拓方法比较[J]. 地理空间信息, 2018, 16(7):75-77.

    Google Scholar

    [26] Yin W Y, Chen Z, Jiang T, et al. Comparison of upward continuation methods for ground gravity data[J]. Geospatial Information, 2018, 16(7):75-77.

    Google Scholar

    [27] Pawlowski R S. Preferential continuation for potential-field anomaly enhancement[J]. Geophysics, 1995, 60(2):390-398.

    Google Scholar

    [28] Jacobsen B H. A case for upward continuation as a standard separation filter for potential-field maps[J]. Geophysics, 1987, 52(8):1138-1148.

    Google Scholar

    [29] 曾华霖, 许德树. 最佳向上延拓高度估计[J]. 地学前缘, 2002, 9(2):499-504.

    Google Scholar

    [30] Zeng H L, Xu D S. Estimation of optimum upward continuation height[J]. Geoscience Frontiers, 2002, 9(2):499-504.

    Google Scholar

    [31] Farhadinia B. A modified class of correlation coefficients of hesitant fuzzy information[J]. Soft Computing, 2021, 25(10):7009-7028.

    Google Scholar

    [32] Zhang P J. The frequency drift and fine structures of Solar S-bursts in the high frequency band of LOFAR[J]. The Astrophysical Journal, 2002, 891(1):89.

    Google Scholar

    [33] 孙海龙, 吕伟星, 陈鑫, 等. 解析延拓法在山阳磁法数据解释中的应用[J]. 中国煤炭地质, 2017, 29(2):76-82.

    Google Scholar

    [34] Sun H L, Lyu W X, Chen X, et al. Application of analytical continuation method on magnetometric data interpretation in shanyang area[J]. Coal Geology of China, 2017, 29(2):76-82.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(924) PDF downloads(107) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint