China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2023 Vol. 47, No. 2
Article Contents

LIU Si-Xin, SHI Wei, SONG Zi-Hao, CHEN Chun-Lin, DAI Zheng. 2023. Identification of footwalls and roofs of coal seams in underground coal mines using borehole radar. Geophysical and Geochemical Exploration, 47(2): 365-371. doi: 10.11720/wtyht.2023.1392
Citation: LIU Si-Xin, SHI Wei, SONG Zi-Hao, CHEN Chun-Lin, DAI Zheng. 2023. Identification of footwalls and roofs of coal seams in underground coal mines using borehole radar. Geophysical and Geochemical Exploration, 47(2): 365-371. doi: 10.11720/wtyht.2023.1392

Identification of footwalls and roofs of coal seams in underground coal mines using borehole radar

  • In coal mining, the accurate determination of the locations of the footwalls and roofs of coal seams and the identification of the geological structures that threaten the safety of excavation are important measures to ensure safe coal mining. This study proposed a technique for detecting the footwalls and roofs of coal seams, which consisted of a mining face-based borehole radar detection method for underground coal mines and a data processing process. Then, this study applied this technique to the Xinyuan coal mine. Specifically, radar profiles were denoised and enhanced through the correction of zero-moment point, DC elimination, band-pass filtering, direct wave removal, and gain processing of measured borehole radar data of boreholes along a mining face of the Xinyuan coal mine. Then, the locations of the roofs and footwalls of coal seams in the underground coal mines were identified and presented through a series of processing and interpretation, including velocity pickup, reflective surface extraction, and diffraction stack migration, as well as time-depth conversion, flipping, splicing, and the correction of borehole trajectories. The technique proposed in this study serves as an effective means for the safe operation of coal mines and thus is of value for promotion.
  • 加载中
  • [1] 国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2020.

    Google Scholar

    [2] National Bureau of Statistics. China statistical yearbook[M]. Beijing: China Statistics Press, 2020.

    Google Scholar

    [3] 宁小亮. 2013—2018年全国煤矿事故规律分析及对策研究[J]. 工矿自动化, 2020, 46(7):34-41.

    Google Scholar

    [4] Ning X L. Law analysis and counter measures research of coal mine accidents in China from 2013 to 2018[J]. Industry and Mine Automation, 2020, 46(7):34-41.

    Google Scholar

    [5] 张传来, 宋敏. 顶板事故的地质原因分析[J]. 采矿与岩层控制工程学报, 2006, 11(5):59-60,91.

    Google Scholar

    [6] Zhang C L, Song M. Geological cause analysis of roof disaster[J]. Journal of Mining And Strata Control Engineering, 2006, 11(5):59-60,91.

    Google Scholar

    [7] Cook J C. Borehole-radar exploration in a coal seam[J]. Geophy-sics, 1977, 42(6):1254-1257.

    Google Scholar

    [8] 王国彪, Mowrey G L. 前景广大的煤界面探测法[J]. 煤矿自动化, 1992(3):57-60.

    Google Scholar

    [9] Wang G B, Mowrey G L. The promising coal interface detection method[J]. Journal of Mine Automation, 1992(3):57-60.

    Google Scholar

    [10] 虎维岳, 南生辉. 雷达探测技术及应用[J]. 煤田地质与勘探, 1997, 25(S1):68-71.

    Google Scholar

    [11] Hu W Y, Nan S H. Radar measurement technique and application[J]. Coal Geology & Exploration, 1997, 25(S1):68-71.

    Google Scholar

    [12] 宋雷, 黄家会, 杨维好. 钻孔地质雷达工作原理及应用[J]. 物探与化探, 1999, 23(6):454-458.

    Google Scholar

    [13] Song L, Huang J H, Yang W H. The principle and application of geological dillhole radar[J]. Geophysical and Geochemical Exploration, 1999, 23(6):454-458.

    Google Scholar

    [14] 黄家会, 宋雷, 崔广心, 等. 应用跨孔雷达层析成像技术研究深部岩层特性[J]. 中国矿业大学学报, 1999, 28(6):61-64.

    Google Scholar

    [15] Huang J H, Song L, Cui G X, et al. Application of crosshole radar tomography in studying characteristics of strata in depths[J]. Journal of China University of Mining & Technology, 1999, 28(6):61-64.

    Google Scholar

    [16] 王驹, 陈伟明, 张鹏, 等. 钻孔雷达在高放废物处置库场址评价中的应用——以北山1号孔为例[J]. 铀矿地质, 2005, 21(6):42-45.

    Google Scholar

    [17] Wang J, Chen W M, Zhang P, et al. Application of borehole radar to site characterization of high-level radioactive waste repository:Taking Beishan borehole No.1 as an example[J]. Uranium Geology, 2005, 21(6):42-45.

    Google Scholar

    [18] 钟声, 王川婴, 吴立新, 等. 点状不良地质体钻孔雷达响应特征的形状效应正演分析[J]. 岩土力学, 2011, 32(5):1583-1588.

    Google Scholar

    [19] Zhong S, Wang C Y, Wu L X, et al. Borehole radar response characteristics of point unfavorable geo-bodies:Forward simulation on its geometric effect[J]. Rock and Soil Mechanics, 2011, 32(5):1583-1588.

    Google Scholar

    [20] 朱成成. 钻孔雷达电磁波传播及异常地质体探测[D]. 长春: 吉林大学, 2018.

    Google Scholar

    [21] Zhu C C. Propagation of borehole radar's elec-tromagnetic wave and detection to abnormal geo-bodies[D]. Changchun: Jilin University, 2018.

    Google Scholar

    [22] 刘四新, 宋梓豪, 程建远, 等. 利用钻孔雷达探测煤矿井下顶底板界面的数值模拟研究[J]. 世界地质, 2021, 40(3):711-720.

    Google Scholar

    [23] Liu S X, Song Z H, Cheng J Y, et al. Numerical simulation research on detecting underground coal mine roof and floor using borehole radar[J]. World Geology, 2021, 40(3):711-720.

    Google Scholar

    [24] 曾昭发, 刘四新, 冯晅, 等. 探地雷达原理与应用[M]. 北京: 电子工业出版社, 2010.

    Google Scholar

    [25] Zeng Z F, Liu S X, Feng X, et al. Ground-penetrating radar principles and applications[M]. Beijing: Publishing House of Electronics Industry, 2010.

    Google Scholar

    [26] 闫维存. 碳酸盐岩裂缝构造的钻孔雷达响应规律研究[D]. 长春: 吉林大学, 2021.

    Google Scholar

    [27] Yan W C. Borehole Radar Response Research to Carbonate Fracture[D]. Changchun: Jilin University, 2021.

    Google Scholar

    [28] 王培, 刘柯, 王选琳, 等. “钻孔雷达+钻孔电视”精细化探测技术的应用[J]. 采矿技术, 2021, 21(3):148-150,160.

    Google Scholar

    [29] Wang P, Liu K, Wang X L, et al. Application of “borehole radar + borehole TV” refined detection technology[J]. Mining Technology, 2021, 21(3):148-150,160.

    Google Scholar

    [30] 冯晅, 曾昭发, 刘四新, 等. 探地雷达信号处理[M]. 北京: 科学出版社, 2014:182.

    Google Scholar

    [31] Feng X, Zeng Z F, Liu S X, et al. Ground-penetrating radar signal processing[M]. Beijing: Science Press, 2014:182.

    Google Scholar

    [32] 何樵登, 韩立国, 王德利. 地震勘探[M]. 北京: 地质出版社, 2009:220.

    Google Scholar

    [33] He Q D, Han L G, Wang D L. Seismic exploration[M]. Beijing: Geological Publishing House, 2009:220.

    Google Scholar

    [34] Fisher E, McMechan G A, Annan A P. Acquisition and processing of wide-aperture ground-penetrating radar data[J]. Geophysics, 1992, 57(3):495-504.

    Google Scholar

    [35] Maijala P. Application of some seismic data processing methods to ground penetrating radar data[J]. Special Paper-Geological Survey of Finland, 1992(16):103-110.

    Google Scholar

    [36] 张理轻, 马晔, 杨宇. 钻孔雷达数据处理技术及分析[J]. 地震工程学报, 2014, 36(4):1107-1112.

    Google Scholar

    [37] Zhang L Q, Ma Y, Yang Y. Study on data processing techniques of borehole radar[J]. China Earthquake Engineering Journal, 2014, 36(4):1107-1112.

    Google Scholar

    [38] 胜利油田地质处,胜利油田地调指挥部. 绕射扫描叠加[J]. 石油地球物理勘探, 1974, 9(5):1-40.

    Google Scholar

    [39] Shengli Oilfield Geology Division, Shengli Oilfield Ground Investigation Command. Wrap-around scanning superimposed[J]. Oil Geophysical Prospecting, 1974, 9(5):1-40.

    Google Scholar

    [40] 王小龙, 张甲迪. 煤矿井下钻孔测斜原理及轨迹计算方法[J]. 煤炭技术, 2020, 39(1):72-75.

    Google Scholar

    [41] Wang X L, Zhang J D. Borehole inclination measuring principle and borehole trajectory calculation method in underground coal mine[J]. Coal Technology, 2020, 39(1):72-75.

    Google Scholar

    [42] 王选琳, 刘柯, 郭召昌. 矿用钻孔地质雷达在打通一煤矿井下的试用验证[J]. 山东煤炭科技, 2020, 38(10):173-175.

    Google Scholar

    [43] Wang X L, Liu K, Guo Z C. Test and verification of mine borehole geological radar in datong No.1 mine[J]. Shandong Coal Science and Technology, 2020, 38(10):173-175.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1023) PDF downloads(185) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint