China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2023 Vol. 47, No. 2
Article Contents

LIU Qing-Wen, LI Jian, QIN De-Wen. 2023. Application of the AVO gradient-based spectral bluing technique in the characterization of thin sandstones in moderately deep strata. Geophysical and Geochemical Exploration, 47(2): 438-446. doi: 10.11720/wtyht.2023.1272
Citation: LIU Qing-Wen, LI Jian, QIN De-Wen. 2023. Application of the AVO gradient-based spectral bluing technique in the characterization of thin sandstones in moderately deep strata. Geophysical and Geochemical Exploration, 47(2): 438-446. doi: 10.11720/wtyht.2023.1272

Application of the AVO gradient-based spectral bluing technique in the characterization of thin sandstones in moderately deep strata

  • The conventional spectral bluing technique is mainly utilized for post-stack seismic frequency expansion.It is applicable to the shallow strata where sandstones and mudstones can be effectively identified based on the wave impedance of logs.However,this technique has many limitations for the impedance aliasing zones of moderately deep strata.The amplitude versus offset (AVO) gradient reflects the change in the relative reflection coefficient with offset and is positively correlated with the rate of change in Poisson's ratio,which can distinguish between sandstones and mudstones in moderately deep strata.Through forward modeling,this study first proved the reliability and stability of the AVO gradient in identifying the top interface of sandstones in moderately deep strata according to the changes in parameters such as lithologic association,physical properties,and fluids.Furthermore,to improve the characterization precision of thin sandstone interbeds in moderately deep strata,this study proposed a AVO gradient-based spectral bluing for seismic frequency expansion.The model tests and practical applications show that the spectral bluing based on AVO gradient can directly identify the information on reservoir interfaces and simplify the multi-parameter lithology prediction method based on CRP gathers or partial angle stack data.Moreover,the new technique proposed in this study can effectively characterize the thin sandstones in deeply buried strata in the XH sag and provides a reference for high-resolution seismic processing of moderately deep strata.
  • 加载中
  • [1] 李庆忠. 走向精确勘探的道路——高分辨率地震勘探系统工程剖析[M]. 北京: 石油工业出版社, 1994.

    Google Scholar

    [2] Li Q Z. The way to obtain a better resolution in seismic prospecting:A systematical analysis of high resolution seismic exploration[M]. Beijing: Petroleum Industry Press, 1994.

    Google Scholar

    [3] 刁瑞. 提高地震分辨率处理效果定量评价方法研究[J]. 物探与化探, 2020, 44(2):381-387.

    Google Scholar

    [4] Diao R. The quantitative evaluation method of seismic high resolution processing effect[J]. Geophysical and Geochemical Exploration, 2020, 44(2):381-387.

    Google Scholar

    [5] 陈传仁, 周熙蘘. 小波谱白化方法提高地震资料的分辨率[J]. 石油地球物理勘探, 2000, 35(6):703-709.

    Google Scholar

    [6] Chen C R, Zhou X X. Improving resolution of seismic data using wavelet spectrum whitening[J]. OGP, 2000, 35(6):703-709.

    Google Scholar

    [7] 孙学凯, 孙赞东, 谢会文, 等. 非稳态地震稀疏反褶积[J]. 石油地球物理勘探, 2015, 50(2):260-266.

    Google Scholar

    [8] Sun X K, Sun Z D, Xie H W, et al. A nonstationary perspective on sparse deconvolution[J]. OGP, 2015, 50(2):260-266.

    Google Scholar

    [9] 邓儒炳, 阎建国, 陈琪, 等. 一种基于连续补偿函数的时变增益限反Q滤波方法[J]. 物探与化探, 2021, 45(3):702-711.

    Google Scholar

    [10] Deng R B, Yan J G, Chen Q, et al. A new time-varying gain limits inverse Q filtering with the continuous compensation function[J]. Geophysical and Geochemical Exploration, 2021, 45(3):702-711.

    Google Scholar

    [11] Braga I L S, Moraes F S. High resolution gathers by inverse Q filtering in the wavelet domain[J]. Geophysics, 2013, 78(2):53-61.

    Google Scholar

    [12] 徐倩茹, 孙成禹, 乔志浩, 等. 基于Gabor变换的地震资料高分辨率处理方法研究[J]. 断块油气田, 2016, 23(4):460-464.

    Google Scholar

    [13] Xu Q R, Sun C Y, Qiao Z H, et al. High-resolution processing method of seismic data based on Gabor transform[J]. Fault-Block Oil & Gas Field, 2016, 23(4):460-464.

    Google Scholar

    [14] Blache-Fraser G. Increasing seismic resolution using spectral blueing and colored inversion:Cannonball field,Trinidad[C]// SEG Technical Program Expanded Abstracts, 2004, 23:2586.

    Google Scholar

    [15] Neep J P. Time-variant colored inversion and spectral blueing[C]// Eage Conference & Exhibition Incorporating Spe Europec, 2014.

    Google Scholar

    [16] 杨瑞召, 赵争光, 马彦龙, 等. 利用谱蓝化和有色反演分辨薄煤层[J]. 天然气地球科学, 2013, 24(1):156-161.

    Google Scholar

    [17] Yang R Z, Zhao Z G, Ma Y L, et al. Thin coal bed resolution by using seismic spectral blueing and colored inversion[J]. Nature Gas Geoscience, 2013, 24(1):156-161.

    Google Scholar

    [18] 陈文雄. 渤海西南部新近系超薄储层定量预测技术研究与应用[J]. 地球物理学进展, 2019, 34(2):694-701.

    Google Scholar

    [19] Chen W X. Research and application of quantitative prediction technique for ultrathin reservoir in the neogene of southwestern Bohai sea[J]. Progress in Geophysics, 2019, 34(2):694-701.

    Google Scholar

    [20] 杨培杰. 复数域约束最小二乘拓频[J]. 石油地球物理勘探, 2021, 56(6):1244-1253.

    Google Scholar

    [21] Yang P J. Constrained complex-domain least-squares spectrum blueing[J]. OGP, 2021, 56(6):1244-1253.

    Google Scholar

    [22] Kazemeini S H, Can Y, Juhlin C, et al. Enhancing seismic data resolution using the prestack blueing technique:An example from the Ketzin CO2 injection site,Germany[J]. Geophysics, 2010, 75(6):101-110.

    Google Scholar

    [23] 李贤兵, 赵俊杰, 晋剑利, 等. 叠前谱蓝化提频技术在乍得Baob油田储层预测中的应用[J]. 石油地球物理勘探, 2020, 55(6):1343-1348.

    Google Scholar

    [24] Li X B, Zhao J J, Jin J L, et al. Pre-stack spectrum blueing frequency increasing technique:A case study on reservoir prediction in Chad Baob Oilfield[J]. OGP, 2020, 55(6):1343-1348.

    Google Scholar

    [25] Shuey R T. A simplification of Zoeppritz equations[J]. Geophysics, 1985, 50(9):609-614.

    Google Scholar

    [26] Rutherford S R, Williams R H. Amplitude-versus-offset variations in gas sands[J]. Geophysics, 1989, 54(6):680-688.

    Google Scholar

    [27] Castagna J P, Swan H W, Foster D J. Framework for AVO gradient and intercept interpretation[J]. Geophysics, 1998, 63(3):948-956.

    Google Scholar

    [28] 王迪, 张益明, 刘志斌, 等. AVO定量解释模板在LX地区致密气“甜点”预测中的应用[J]. 石油物探, 2020, 59(6):936-948.

    Google Scholar

    [29] Wang D, Zhang Y M, Liu Z B, et al. Application of an AVO template to identify sweet spots in a tight sandstone reservoir in the LX area[J]. Geophysical Prospecting for Petroleum, 2022, 59(6):936-948.

    Google Scholar

    [30] 付琛, 廖键, 陈殿远, 等. 根据AVO相对变化识别流体的新方法[J]. 中国海上油气, 2021, 33(5):62-72.

    Google Scholar

    [31] Fu C, Liao J, Chen D Y, et al. A new method for fluid identification based on relative changes in AVO[J]. China Offshore Oil and Gas, 2021, 33(5):62-72.

    Google Scholar

    [32] 刘力辉, 李建海, 杨晓, 等. 叠前AVO属性的地震岩性学探索与实践研究[J]. 石油物探, 2013, 52(3):247-252.

    Google Scholar

    [33] Liu L H, Li J H, Yang X, et al. Exploration and practical study of pre-stack AVO property on seismic lithology[J]. Geophysical Prospecting for Petroleum, 2013, 52(3):247-252.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(596) PDF downloads(76) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint