China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2023 Vol. 47, No. 1
Article Contents

YANG Chao-Yi, ZHU Qian-Kun, JIE Shao-Peng, KONG Chui-Ai, SHA You-Cai, ZHONG Zhi-Yong, SHEN Qi-Wu, CHEN Zhi-Jun, MA Huo-Lin. 2023. Comprehensive application of borehole log data of the Pulang copper deposit, Yunnan Province. Geophysical and Geochemical Exploration, 47(1): 14-21. doi: 10.11720/wtyht.2023.1128
Citation: YANG Chao-Yi, ZHU Qian-Kun, JIE Shao-Peng, KONG Chui-Ai, SHA You-Cai, ZHONG Zhi-Yong, SHEN Qi-Wu, CHEN Zhi-Jun, MA Huo-Lin. 2023. Comprehensive application of borehole log data of the Pulang copper deposit, Yunnan Province. Geophysical and Geochemical Exploration, 47(1): 14-21. doi: 10.11720/wtyht.2023.1128

Comprehensive application of borehole log data of the Pulang copper deposit, Yunnan Province

  • The copper mineralized bodies and orebodies of the Pulang copper deposit in Yunnan Province are mainly distributed in the Pulang complex porphyry body and were formed through complex multi-stage development. This study aims to detail the geophysical response and fractures of copper reservoirs and provide detailed orebody characteristics, fractures, and horizon burial depth to be referenced in the exploration and exploitation of the Pulang copper deposit. First, the borehole-log data in the Pulang copper deposit were sampled for comprehensive evaluation. Then, in combination with the drilling reports and data on partial core samples, this study analyzed the log response characteristics and fractures and identified the lithology of the Pulang copper deposit using mathematical statistics, three-dimensional cross plots, convolutional neural networks (CNNs), and fracture parameter calculation. The log response characteristics of the three major strata of quartz monzonite porphyries, quartz diorite porphyrites, and hornstones in the study area are as follows. The hornstone strata have relatively high resistivity, followed by the quartz diorite porphyrite strata and the quartz monzonite porphyry strata in sequence. The resistivity decreases significantly at the intervals with fractures occurring or at the relatively fractured intervals. The quartz monzonite porphyry strata have a relatively high charge rate (polarization rate) of up to about 10%. The hornstone strata have relatively high radioactive intensity than the quartz diorite porphyrite strata and the quartz monzonite porphyry strata. CNNs were used to identify and analyze the lithology of the three major types of strata based on log data, with an accuracy rate of 97.94%. Finally, this study identified fractures in these strata using dual laterolog data. The resistivity significantly decreases at intervals with fractures occurring and differs greatly between deep and shallow lateral resistivity. The quartz monzonite porphyry strata with a high copper grade have relatively low resistivity and relatively well-developed high-angle fractures. The results of this study are of significance for the identification of ore body characteristics and the exploitation of ore bodies in the Pulang copper deposit.
  • 加载中
  • [1] 范玉华, 李文昌. 云南普朗斑岩铜矿床地质特征[J]. 中国地质, 2006, 33(2): 352-362.

    Google Scholar

    [2] Fan Y H, Li W C. Geological characteristics of the Pulang porphyry copper deposit, Yunnan[J]. Geology in China, 2006, 33(2): 352-362.

    Google Scholar

    [3] 潘和平, 马火林, 蔡柏林, 等. 地球物理测井与井中物探[M]. 北京: 科学出版社, 2009.

    Google Scholar

    [4] Pan H P, Ma H L, Cai B L, et al. Principles of Geophysical Logging and Well Geophysical Exploration[M]. Beijing: Science Press, 2009.

    Google Scholar

    [5] 袁桂琴, 熊盛青, 孟庆敏, 等. 地球物理勘查技术与应用研究[J]. 地质学报, 2011, 85(11): 1744-1805.

    Google Scholar

    [6] Yuan G Q, Xiong S Q, Meng Q M, et al. Application research of geophysical prospecting techniques[J]. Acta Geologica Sinica, 2011, 85(11): 1744-1805.

    Google Scholar

    [7] 樊彦超. 地球物理测井技术在金属矿勘查中的应用[J]. 世界有色金属, 2018(15): 129-130.

    Google Scholar

    [8] Fan Y C. Application of geophysical logging technology in metal ore exploration[J]. World Nonferrous Metals, 2018(15): 129-130.

    Google Scholar

    [9] 周新鹏, 项彪, 邹长春, 等. 南岭地区多金属矿NLSD-2孔综合地球物理测井研究[J]. 地质学报, 2014, 88(4): 686-694.

    Google Scholar

    [10] Zhou X P, Xiang B, Zou C C, et al. Integrated geophysical logging study on the borehole NLSD-2 of the polymetallic ore in the Nanling District[J]. Acta Geologica Sinica, 2014, 88(4): 686-694.

    Google Scholar

    [11] 郭建宏, 杜婷, 张占松, 等. 基于支持向量机与地球物理测井资料的煤体结构识别方法[J]. 物探与化探, 2021, 45(3):768-777.

    Google Scholar

    [12] Guo J H, Du T, Zhang Z S, et al. The coal structure identification method based on support vector machine and geophysical logging data[J]. Geophysical and Geochemical Exploration, 2021, 45(3):768-777.

    Google Scholar

    [13] Konate A A, Pan H P, Ma H L, et al. Use of spectral gamma ray as a lithology guide for fault rocks: A case study from the Wenchuan Earthquake Fault Scientific Drilling project Borehole 4 (WFSD-4)[J]. Applied Radiation and Isotopes, 2017, 128: 75-85. https://doi.org/10.1016/j.apradiso.2017.06.038.

    Google Scholar

    [14] Xu Z X, Ma W, Peng L, et al. Deep learning of rock images for intelligent lithology identification[J]. Computers & Geosciences, 2021, 154: 104799. https://doi.org/10.1016/j.cageo.2021.104799.

    Google Scholar

    [15] 陈钢花, 梁莎莎, 王军, 等. 卷积神经网络在岩性识别中的应用[J]. 测井技术, 2019, 43(2): 129-134.

    Google Scholar

    [16] Chen G H, Liang S S, Wang J, et al. Application of convolutional neural network in lithology identification[J]. Well Logging Technology, 2019, 43(2): 129-134.

    Google Scholar

    [17] Yang L Q, He W Y, Gao X, et al. Mesozoic multiple magmatism and porphyry-skarn Cu-polymetallic systems of the Yidun Terrane, Eastern Tethys: Implications for subduction- and transtension-related metallogeny[J]. Gondwana Research, 2018, 62: 144-162. https://doi.org/10.1016/j.gr.2018.02.009.

    Google Scholar

    [18] 李文昌, 曾普胜. 云南普朗超大型斑岩铜矿特征及成矿模型[J]. 成都理工大学学报: 自然科学版, 2007, 34(4): 436- 446.

    Google Scholar

    [19] Li W C, Zeng P S. Characteristics and metallogenic model of the Pulang super large porphyry copper deposit in Yunnan, China[J]. Journal of Chengdu University of Technology:Science & Technology Edition, 2007, 34(4):436-446.

    Google Scholar

    [20] 李文昌, 余海军, 尹光候. 西南”三江”格咱岛弧斑岩成矿系统[J]. 岩石学报, 2013, 29(4): 1129-1144.

    Google Scholar

    [21] Li W C, Yu H J, Yin G H. Porphyry metallogenic system of Geza arc in the Sanjiang region, southwestern China[J]. Acta Petrologica Sinica, 2013, 29(4): 1129-1144.

    Google Scholar

    [22] LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. https://doi.org/10.1109/5.726791.

    Google Scholar

    [23] Sibbit A M, Faivre Q. The dual laterolog response in fractured rocks[C]// Dallas:SPWLA 26th Annual Logging Symposium, 1985: 17-20.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(945) PDF downloads(88) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint