| [1] |
范玉华, 李文昌. 云南普朗斑岩铜矿床地质特征[J]. 中国地质, 2006, 33(2): 352-362.
Google Scholar
|
| [2] |
Fan Y H, Li W C. Geological characteristics of the Pulang porphyry copper deposit, Yunnan[J]. Geology in China, 2006, 33(2): 352-362.
Google Scholar
|
| [3] |
潘和平, 马火林, 蔡柏林, 等. 地球物理测井与井中物探[M]. 北京: 科学出版社, 2009.
Google Scholar
|
| [4] |
Pan H P, Ma H L, Cai B L, et al. Principles of Geophysical Logging and Well Geophysical Exploration[M]. Beijing: Science Press, 2009.
Google Scholar
|
| [5] |
袁桂琴, 熊盛青, 孟庆敏, 等. 地球物理勘查技术与应用研究[J]. 地质学报, 2011, 85(11): 1744-1805.
Google Scholar
|
| [6] |
Yuan G Q, Xiong S Q, Meng Q M, et al. Application research of geophysical prospecting techniques[J]. Acta Geologica Sinica, 2011, 85(11): 1744-1805.
Google Scholar
|
| [7] |
樊彦超. 地球物理测井技术在金属矿勘查中的应用[J]. 世界有色金属, 2018(15): 129-130.
Google Scholar
|
| [8] |
Fan Y C. Application of geophysical logging technology in metal ore exploration[J]. World Nonferrous Metals, 2018(15): 129-130.
Google Scholar
|
| [9] |
周新鹏, 项彪, 邹长春, 等. 南岭地区多金属矿NLSD-2孔综合地球物理测井研究[J]. 地质学报, 2014, 88(4): 686-694.
Google Scholar
|
| [10] |
Zhou X P, Xiang B, Zou C C, et al. Integrated geophysical logging study on the borehole NLSD-2 of the polymetallic ore in the Nanling District[J]. Acta Geologica Sinica, 2014, 88(4): 686-694.
Google Scholar
|
| [11] |
郭建宏, 杜婷, 张占松, 等. 基于支持向量机与地球物理测井资料的煤体结构识别方法[J]. 物探与化探, 2021, 45(3):768-777.
Google Scholar
|
| [12] |
Guo J H, Du T, Zhang Z S, et al. The coal structure identification method based on support vector machine and geophysical logging data[J]. Geophysical and Geochemical Exploration, 2021, 45(3):768-777.
Google Scholar
|
| [13] |
Konate A A, Pan H P, Ma H L, et al. Use of spectral gamma ray as a lithology guide for fault rocks: A case study from the Wenchuan Earthquake Fault Scientific Drilling project Borehole 4 (WFSD-4)[J]. Applied Radiation and Isotopes, 2017, 128: 75-85. https://doi.org/10.1016/j.apradiso.2017.06.038.
Google Scholar
|
| [14] |
Xu Z X, Ma W, Peng L, et al. Deep learning of rock images for intelligent lithology identification[J]. Computers & Geosciences, 2021, 154: 104799. https://doi.org/10.1016/j.cageo.2021.104799.
Google Scholar
|
| [15] |
陈钢花, 梁莎莎, 王军, 等. 卷积神经网络在岩性识别中的应用[J]. 测井技术, 2019, 43(2): 129-134.
Google Scholar
|
| [16] |
Chen G H, Liang S S, Wang J, et al. Application of convolutional neural network in lithology identification[J]. Well Logging Technology, 2019, 43(2): 129-134.
Google Scholar
|
| [17] |
Yang L Q, He W Y, Gao X, et al. Mesozoic multiple magmatism and porphyry-skarn Cu-polymetallic systems of the Yidun Terrane, Eastern Tethys: Implications for subduction- and transtension-related metallogeny[J]. Gondwana Research, 2018, 62: 144-162. https://doi.org/10.1016/j.gr.2018.02.009.
Google Scholar
|
| [18] |
李文昌, 曾普胜. 云南普朗超大型斑岩铜矿特征及成矿模型[J]. 成都理工大学学报: 自然科学版, 2007, 34(4): 436- 446.
Google Scholar
|
| [19] |
Li W C, Zeng P S. Characteristics and metallogenic model of the Pulang super large porphyry copper deposit in Yunnan, China[J]. Journal of Chengdu University of Technology:Science & Technology Edition, 2007, 34(4):436-446.
Google Scholar
|
| [20] |
李文昌, 余海军, 尹光候. 西南”三江”格咱岛弧斑岩成矿系统[J]. 岩石学报, 2013, 29(4): 1129-1144.
Google Scholar
|
| [21] |
Li W C, Yu H J, Yin G H. Porphyry metallogenic system of Geza arc in the Sanjiang region, southwestern China[J]. Acta Petrologica Sinica, 2013, 29(4): 1129-1144.
Google Scholar
|
| [22] |
LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. https://doi.org/10.1109/5.726791.
Google Scholar
|
| [23] |
Sibbit A M, Faivre Q. The dual laterolog response in fractured rocks[C]// Dallas:SPWLA 26th Annual Logging Symposium, 1985: 17-20.
Google Scholar
|