[1] |
周幼吾, 郭东信, 邱国庆, 等. 中国冻土[M]. 北京: 科学出版社, 2000.
Google Scholar
|
[2] |
Zhou Y W, Guo D X, Qiu G Q, et al. Geocryology in China [M]. Beijing: Science Press, 2000.
Google Scholar
|
[3] |
柳瑶. 冻土电阻率模型及其试验研究[D]. 哈尔滨:东北林业大学, 2015.
Google Scholar
|
[4] |
Liu Y. Establishment and experimental study of frozen soil resistivity model[D]. Haerbin: Northeast Forestry University, 2015.
Google Scholar
|
[5] |
祝有海, 赵省民, 卢振权. 中国冻土区天然气水合物的找矿选区及其资源潜力[J]. 天然气工业, 2011,31(1):15-19.
Google Scholar
|
[6] |
Zhu Y H, Zhao S M, Lu Z Q. Resource potential and reservoir distribution of natural gas hydrate in permafrost areas of China[J]. Natural Gas Industry, 2011,31(1):15-19.
Google Scholar
|
[7] |
王通, 俞祁浩, 游艳辉, 等. 物探技术在多年冻土探测方面的应用[J]. 物探与化探, 2011,35(5):639-642.
Google Scholar
|
[8] |
Wang T, Yu Q H, You Y H, et al. The application of electromagnetic technology to permafrost exploration[J]. Geophysical and Geochemical Exploration, 2011,35(5):639-642.
Google Scholar
|
[9] |
祝杰, 李平, 刘应冬. 高寒冻土条件下CSAMT在地热勘探中的试验研究[J]. 地矿测绘, 2020,3(1):58-59.
Google Scholar
|
[10] |
Zhu J, Li P, Liu Y D. Experimental study of CSAMT in geothermal exploration under alpine frozen soil condition[J]. Geological and Mineral Surveying and Mapping, 2020,3(1):58-59.
Google Scholar
|
[11] |
王武, 赵林, 刘广岳, 等. 瞬变电磁法(TEM)在多年冻土区的应用研究[J]. 冰川冻土, 2011,33(1):156-163.
Google Scholar
|
[12] |
Wang W, Zhao L, Liu G Y, et al. Geophysical mapping of permafrost using TEM[J]. Journal of Glaciology and Geocryology, 2011,33(1):156-163.
Google Scholar
|
[13] |
Efremov V N. Delineating the thawed and ice-rich zones based on apparent electromagnetic resistivity of frozen ground[J]. Journal of Engineering of Heilongjiang University, 2014(3):262-265.
Google Scholar
|
[14] |
顾钟炜. 北美多年冻土调查中使用的几种电磁方法[J]. 冰川冻土, 1981,3(4):88-98.
Google Scholar
|
[15] |
Gu Z W. Several electromagnetic methods used in permafrost surveys in North America[J]. Journal of Glaciology and Geocryology, 1981,3(4):88-98.
Google Scholar
|
[16] |
Hoekstra P, Sellmann P V, Delaney A. Ground and Airborne Resistivity Surveys of Permafrost Near Fairbanks, Alaska[J]. Geophysics, 1975,40(4):641-656.
Google Scholar
|
[17] |
Hauck C, Guglielmin M, Isaksen K, et al. Applicability of frequency-domain and time-domain electromagnetic methods for mountain permafrost studies[J]. Permafrost & Periglacial Processes, 2010,12(1):39-52.
Google Scholar
|
[18] |
Minsley B J, Abraham J D, Smith B D, et al. Airborne electromagnetic imaging of discontinuous permafrost[J]. Geophysical Research Letters, 2012,39(2):L02503.
Google Scholar
|
[19] |
Pastick N J, Jorgenson M T, Wylie B K, et al. Extending airborne electromagnetic surveys for regional active layer and permafrost mapping with remote sensing and ancillary data, Yukon Flats Ecoregion, Central Alaska[J]. Permafrost and Periglacial Processes, 2013,24(3):184-199.
Google Scholar
|
[20] |
Foley N, Tulaczyk S, Auken E, et al. Mapping geothermal heat flux using permafrost thickness constrained by airborne electromagnetic surveys on the western coast of Ross Island, Antarctica[J]. Exploration Geophysics, 2020,51(1):84-93.
Google Scholar
|
[21] |
Key K, Siegfried M R. The feasibility of imaging subglacial hydrology beneath ice streams with ground-based electromagnetics[J]. Journal of Glaciology, 2017,63(241):755-771.
Google Scholar
|
[22] |
杨思忠, 金会军, 于少鹏, 等. 中俄输油管道(漠河—大庆段)主要冻土环境问题探析[J]. 冰川冻土, 2010,32(2):358-366.
Google Scholar
|
[23] |
Yang S Z, Jin H J, Yu S P, et al. An Investigation into the Permafrost Environment along the Chinese-Russian Oil Pipeline Route from Mohe to Daqing[J]. Journal of Glaciology and Geocryology, 2010,32(2):358-366.
Google Scholar
|
[24] |
文怀军, 鲁静, 尚潞君, 等. 青海聚乎更矿区侏罗纪含煤岩系层序地层研究[J]. 中国煤田地质, 2006,18(5):19-21.
Google Scholar
|
[25] |
Wen H J, Lu J, Shang L J, et al. A sequence stratigraphic discussion of the Jurassic coal measures in the Juhugeng coalmine area in Qinghai province[J]. Coal Geology of China, 2006,18(5):19-21.
Google Scholar
|
[26] |
史健宗, 南卓铜, 石伟, 等. 青藏高原多年冻土本底调查信息系统[J]. 遥感技术与应用, 2010,25(5):725-732.
Google Scholar
|
[27] |
Shi J Z, Nan Z T, Shi W, et al. An Information System for the Permafrost Background Investigation over the Qinghai-Tibet Plateau[J]. Remote Sensing Technology and Application, 2010,25(5):725-732.
Google Scholar
|
[28] |
肖继涛, 柳瑶, 胡照广, 等. 三种典型冻土的电阻率特性对比分析[J]. 森林工程, 2015,31(6):116-121.
Google Scholar
|
[29] |
Xiao J T, Liu Y, Hu Z G, et al. Comparative analysis on resistivity characteristics of three typical permafrost[J]. Forest Engineering, 2015,31(6):116-121.
Google Scholar
|
[30] |
王显烈. 用测井曲线解释冻土层厚度[J]. 冰川冻土, 1991,13(1):91-94.
Google Scholar
|
[31] |
Wang X L. Interpretating the permafrost thickness with logging curves[J]. Journal of Glaciology and Geocryology, 1991,13(1):91-94.
Google Scholar
|
[32] |
裴发根, 方慧, 杜炳锐, 等. AMT正演模拟及反演求导方法在探测冻土厚度中的应用——以青海木里地区多年冻土层为例[J]. 物探与化探, 2016,40(2):405-410.
Google Scholar
|
[33] |
Pei F G, Fang H, Du B R, et al. The application of AMT forward modeling and inversion derivation method to detecting permafrost thickness: A case study of Muli permafrost area in Qinghai Province[J]. Geophysical and Geochemical Exploration, 2016,40(2):405-410.
Google Scholar
|
[34] |
姚大为, 王书民, 雷达, 等. CSAMT在祁连山永久冻土区天然气水合物调查中的应用[J]. 工程地球物理学报, 2013,10(2):132-137.
Google Scholar
|
[35] |
Yao D W, Wang S M, Lei D, et al. Application of CSAMT to Qilian Mountain Permafrost Region Gas Hydrate Investigation[J]. Chinese Journal of Engineering Geophysics, 2013,10(2):132-137.
Google Scholar
|
[36] |
檀文慧, 钱卫, 巴晶, 等. 祁连山冻土区天然气水合物高密度电阻率法勘探应用[C]//中国地球科学联合学术年会, 2016.
Google Scholar
|
[37] |
Tan W H, Qian W, Ba J, et al. Application of high-density resistivity method in gas hydrate exploration in qilian Mountain permafrost area[C]// Annual Meeting of Chinese Geoscience Union, 2016.
Google Scholar
|
[38] |
刘钊剡, 韩德波. 电阻率测深在探测冻土层融化深度方面的应用[J]. 工程勘察, 1996,24(2):64-66.
Google Scholar
|
[39] |
Liu Z Y, Han D B. Application of resistivity sounding in detecting thawing depth of frozen soil[J]. Geotechnical Investigation & Surveying, 1996,24(2):64-66.
Google Scholar
|
[40] |
韩江涛, 刘国兴, 唐君辉. TEM拟地震成像法在漠河地区探测永久冻土层的应用[J]. 吉林大学学报:地球科学版, 2008,38(6):1060-1064.
Google Scholar
|
[41] |
Han J T, Liu G X, Tang J H. Application of Transient Electromagnetic Pseudo-Seismic Interpretation Imaging Method to Explore Permafrost Strata in Mohe Region[J]. Journal of Jilin University:Earth Science Edition, 2008,38(6):1060-1064.
Google Scholar
|
[42] |
王生廷, 盛煜, 吴吉春, 等. 祁连山大通河源区冻土特征及变化趋势[J]. 冰川冻土, 2015,37(1):27-37.
Google Scholar
|
[43] |
Wang S T, Sheng Y, Wu J C, et al. The characteristics and changing tendency of permafrost in the source regions of the Datong River, Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2015,37(1):27-37.
Google Scholar
|
[44] |
吴吉春, 盛煜, 于晖, 等. 祁连山中东部的冻土特征(Ⅰ):多年冻土分布[J]. 冰川冻土, 2007,29(3):418-425.
Google Scholar
|
[45] |
Wu J C, Sheng Y, Yu H, et al. Permafrost in the Middle-East Section of Qilian Mountains (Ⅰ): Distribution of permafrost[J]. Journal of Glaciology and Geocryology, 2007,29(3):418-425.
Google Scholar
|
[46] |
吴吉春, 盛煜, 于晖, 等. 祁连山中东部的冻土特征(Ⅱ):多年冻土特征[J]. 冰川冻土, 2007,29(3):426-432.
Google Scholar
|
[47] |
Wu J C, Sheng Y, Yu H, et al. Permafrost in the Middle-East Section of Qilian Mountains (Ⅱ): Characters of permafrost[J]. Journal of Glaciology and Geocryology, 2007,29(3):426-432.
Google Scholar
|
[48] |
殷长春. 航空电磁理论与勘查技术[M]. 北京: 科学出版社, 2018.
Google Scholar
|
[49] |
Yin C C. Airborne electromagnetic theory and exploration technology [M]. Beijing: Science Press, 2018.
Google Scholar
|
[50] |
王卫平, 王守坦. 频率域航空电磁法及应用[M]. 北京: 地质出版社, 2011.
Google Scholar
|
[51] |
Wang W P, Wang S T. Frequency domain airborne electromagnetic method and its applications [M]. Beijing: Geological Publishing House, 2011.
Google Scholar
|
[52] |
黄威. 时间域航空电磁系统仿真与关键技术研究[D]. 长春:吉林大学, 2016.
Google Scholar
|
[53] |
Huang W. Time-domain Airborne Electromagnetic Simulation and Key Technologies[D]. Changchun: Jilin University, 2016.
Google Scholar
|