China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2022 Vol. 46, No. 1
Article Contents

SUN Si-Yuan, YU Xue-Zhong, XIE Ru-Kuan, HE Yi-Yuan, SHAN Xi-Peng, LI Shi-Jun. 2022. Capabilities of airborne electromagnetic methods to detect permafrost. Geophysical and Geochemical Exploration, 46(1): 104-113. doi: 10.11720/wtyht.2022.2480
Citation: SUN Si-Yuan, YU Xue-Zhong, XIE Ru-Kuan, HE Yi-Yuan, SHAN Xi-Peng, LI Shi-Jun. 2022. Capabilities of airborne electromagnetic methods to detect permafrost. Geophysical and Geochemical Exploration, 46(1): 104-113. doi: 10.11720/wtyht.2022.2480

Capabilities of airborne electromagnetic methods to detect permafrost

  • It is critical for climate, water resources, ecology, and engineering construction in China to accurately assess the three-dimensional distribution and periodic change of permafrost. Permafrost is mainly distributed in high-elevation regions in China. Therefore, the surface geophysical prospecting suffers from low efficiency, high cost, and poor transportation in determining the thickness of permafrost in China. In contrast, the airborne electromagnetic methods using resistivity difference enjoy great advantages. This study established a geoelectric model based on the thickness and resistivity of permafrost in Qilian area, Qinghai Province. Then, by simulating the thickness and resistivity of permafrost, low resistance layer under permafrost, flight height, and changes in the angles of receiver coils, this study analyzed the differences in electromagnetic responses under different conditions obtained from one-dimensional forward modeling using time-domain and frequency-domain airborne electromagnetic systems AeroTEM and Impulse. Based on this, this study assessed the capability of airborne electromagnetic methods to detect the top and bottom interfaces of permafrost. According to the simulation results, frequency-domain airborne electromagnetic system Impulse can determine the top interface of the permafrost covered by a marsh, wetland, or moist meadow according to the thickness of melted permafrost under a low noise level. In comparison, time-domain airborne electromagnetic system AeroTEM can determine the bottom interface of the permafrost, with the determination accuracy significantly improving when low-resistivity layers occur beneath the permafrost. Therefore, the top and bottom interfaces of permafrost can be jointly determined using frequency and time-domain airborne electromagnetic data. The results of this study will provide theoretical support for the future application of airborne electromagnetic methods to permafrost surveys in China.
  • 加载中
  • [1] 周幼吾, 郭东信, 邱国庆, 等. 中国冻土[M]. 北京: 科学出版社, 2000.

    Google Scholar

    [2] Zhou Y W, Guo D X, Qiu G Q, et al. Geocryology in China [M]. Beijing: Science Press, 2000.

    Google Scholar

    [3] 柳瑶. 冻土电阻率模型及其试验研究[D]. 哈尔滨:东北林业大学, 2015.

    Google Scholar

    [4] Liu Y. Establishment and experimental study of frozen soil resistivity model[D]. Haerbin: Northeast Forestry University, 2015.

    Google Scholar

    [5] 祝有海, 赵省民, 卢振权. 中国冻土区天然气水合物的找矿选区及其资源潜力[J]. 天然气工业, 2011,31(1):15-19.

    Google Scholar

    [6] Zhu Y H, Zhao S M, Lu Z Q. Resource potential and reservoir distribution of natural gas hydrate in permafrost areas of China[J]. Natural Gas Industry, 2011,31(1):15-19.

    Google Scholar

    [7] 王通, 俞祁浩, 游艳辉, 等. 物探技术在多年冻土探测方面的应用[J]. 物探与化探, 2011,35(5):639-642.

    Google Scholar

    [8] Wang T, Yu Q H, You Y H, et al. The application of electromagnetic technology to permafrost exploration[J]. Geophysical and Geochemical Exploration, 2011,35(5):639-642.

    Google Scholar

    [9] 祝杰, 李平, 刘应冬. 高寒冻土条件下CSAMT在地热勘探中的试验研究[J]. 地矿测绘, 2020,3(1):58-59.

    Google Scholar

    [10] Zhu J, Li P, Liu Y D. Experimental study of CSAMT in geothermal exploration under alpine frozen soil condition[J]. Geological and Mineral Surveying and Mapping, 2020,3(1):58-59.

    Google Scholar

    [11] 王武, 赵林, 刘广岳, 等. 瞬变电磁法(TEM)在多年冻土区的应用研究[J]. 冰川冻土, 2011,33(1):156-163.

    Google Scholar

    [12] Wang W, Zhao L, Liu G Y, et al. Geophysical mapping of permafrost using TEM[J]. Journal of Glaciology and Geocryology, 2011,33(1):156-163.

    Google Scholar

    [13] Efremov V N. Delineating the thawed and ice-rich zones based on apparent electromagnetic resistivity of frozen ground[J]. Journal of Engineering of Heilongjiang University, 2014(3):262-265.

    Google Scholar

    [14] 顾钟炜. 北美多年冻土调查中使用的几种电磁方法[J]. 冰川冻土, 1981,3(4):88-98.

    Google Scholar

    [15] Gu Z W. Several electromagnetic methods used in permafrost surveys in North America[J]. Journal of Glaciology and Geocryology, 1981,3(4):88-98.

    Google Scholar

    [16] Hoekstra P, Sellmann P V, Delaney A. Ground and Airborne Resistivity Surveys of Permafrost Near Fairbanks, Alaska[J]. Geophysics, 1975,40(4):641-656.

    Google Scholar

    [17] Hauck C, Guglielmin M, Isaksen K, et al. Applicability of frequency-domain and time-domain electromagnetic methods for mountain permafrost studies[J]. Permafrost & Periglacial Processes, 2010,12(1):39-52.

    Google Scholar

    [18] Minsley B J, Abraham J D, Smith B D, et al. Airborne electromagnetic imaging of discontinuous permafrost[J]. Geophysical Research Letters, 2012,39(2):L02503.

    Google Scholar

    [19] Pastick N J, Jorgenson M T, Wylie B K, et al. Extending airborne electromagnetic surveys for regional active layer and permafrost mapping with remote sensing and ancillary data, Yukon Flats Ecoregion, Central Alaska[J]. Permafrost and Periglacial Processes, 2013,24(3):184-199.

    Google Scholar

    [20] Foley N, Tulaczyk S, Auken E, et al. Mapping geothermal heat flux using permafrost thickness constrained by airborne electromagnetic surveys on the western coast of Ross Island, Antarctica[J]. Exploration Geophysics, 2020,51(1):84-93.

    Google Scholar

    [21] Key K, Siegfried M R. The feasibility of imaging subglacial hydrology beneath ice streams with ground-based electromagnetics[J]. Journal of Glaciology, 2017,63(241):755-771.

    Google Scholar

    [22] 杨思忠, 金会军, 于少鹏, 等. 中俄输油管道(漠河—大庆段)主要冻土环境问题探析[J]. 冰川冻土, 2010,32(2):358-366.

    Google Scholar

    [23] Yang S Z, Jin H J, Yu S P, et al. An Investigation into the Permafrost Environment along the Chinese-Russian Oil Pipeline Route from Mohe to Daqing[J]. Journal of Glaciology and Geocryology, 2010,32(2):358-366.

    Google Scholar

    [24] 文怀军, 鲁静, 尚潞君, 等. 青海聚乎更矿区侏罗纪含煤岩系层序地层研究[J]. 中国煤田地质, 2006,18(5):19-21.

    Google Scholar

    [25] Wen H J, Lu J, Shang L J, et al. A sequence stratigraphic discussion of the Jurassic coal measures in the Juhugeng coalmine area in Qinghai province[J]. Coal Geology of China, 2006,18(5):19-21.

    Google Scholar

    [26] 史健宗, 南卓铜, 石伟, 等. 青藏高原多年冻土本底调查信息系统[J]. 遥感技术与应用, 2010,25(5):725-732.

    Google Scholar

    [27] Shi J Z, Nan Z T, Shi W, et al. An Information System for the Permafrost Background Investigation over the Qinghai-Tibet Plateau[J]. Remote Sensing Technology and Application, 2010,25(5):725-732.

    Google Scholar

    [28] 肖继涛, 柳瑶, 胡照广, 等. 三种典型冻土的电阻率特性对比分析[J]. 森林工程, 2015,31(6):116-121.

    Google Scholar

    [29] Xiao J T, Liu Y, Hu Z G, et al. Comparative analysis on resistivity characteristics of three typical permafrost[J]. Forest Engineering, 2015,31(6):116-121.

    Google Scholar

    [30] 王显烈. 用测井曲线解释冻土层厚度[J]. 冰川冻土, 1991,13(1):91-94.

    Google Scholar

    [31] Wang X L. Interpretating the permafrost thickness with logging curves[J]. Journal of Glaciology and Geocryology, 1991,13(1):91-94.

    Google Scholar

    [32] 裴发根, 方慧, 杜炳锐, 等. AMT正演模拟及反演求导方法在探测冻土厚度中的应用——以青海木里地区多年冻土层为例[J]. 物探与化探, 2016,40(2):405-410.

    Google Scholar

    [33] Pei F G, Fang H, Du B R, et al. The application of AMT forward modeling and inversion derivation method to detecting permafrost thickness: A case study of Muli permafrost area in Qinghai Province[J]. Geophysical and Geochemical Exploration, 2016,40(2):405-410.

    Google Scholar

    [34] 姚大为, 王书民, 雷达, 等. CSAMT在祁连山永久冻土区天然气水合物调查中的应用[J]. 工程地球物理学报, 2013,10(2):132-137.

    Google Scholar

    [35] Yao D W, Wang S M, Lei D, et al. Application of CSAMT to Qilian Mountain Permafrost Region Gas Hydrate Investigation[J]. Chinese Journal of Engineering Geophysics, 2013,10(2):132-137.

    Google Scholar

    [36] 檀文慧, 钱卫, 巴晶, 等. 祁连山冻土区天然气水合物高密度电阻率法勘探应用[C]//中国地球科学联合学术年会, 2016.

    Google Scholar

    [37] Tan W H, Qian W, Ba J, et al. Application of high-density resistivity method in gas hydrate exploration in qilian Mountain permafrost area[C]// Annual Meeting of Chinese Geoscience Union, 2016.

    Google Scholar

    [38] 刘钊剡, 韩德波. 电阻率测深在探测冻土层融化深度方面的应用[J]. 工程勘察, 1996,24(2):64-66.

    Google Scholar

    [39] Liu Z Y, Han D B. Application of resistivity sounding in detecting thawing depth of frozen soil[J]. Geotechnical Investigation & Surveying, 1996,24(2):64-66.

    Google Scholar

    [40] 韩江涛, 刘国兴, 唐君辉. TEM拟地震成像法在漠河地区探测永久冻土层的应用[J]. 吉林大学学报:地球科学版, 2008,38(6):1060-1064.

    Google Scholar

    [41] Han J T, Liu G X, Tang J H. Application of Transient Electromagnetic Pseudo-Seismic Interpretation Imaging Method to Explore Permafrost Strata in Mohe Region[J]. Journal of Jilin University:Earth Science Edition, 2008,38(6):1060-1064.

    Google Scholar

    [42] 王生廷, 盛煜, 吴吉春, 等. 祁连山大通河源区冻土特征及变化趋势[J]. 冰川冻土, 2015,37(1):27-37.

    Google Scholar

    [43] Wang S T, Sheng Y, Wu J C, et al. The characteristics and changing tendency of permafrost in the source regions of the Datong River, Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2015,37(1):27-37.

    Google Scholar

    [44] 吴吉春, 盛煜, 于晖, 等. 祁连山中东部的冻土特征(Ⅰ):多年冻土分布[J]. 冰川冻土, 2007,29(3):418-425.

    Google Scholar

    [45] Wu J C, Sheng Y, Yu H, et al. Permafrost in the Middle-East Section of Qilian Mountains (Ⅰ): Distribution of permafrost[J]. Journal of Glaciology and Geocryology, 2007,29(3):418-425.

    Google Scholar

    [46] 吴吉春, 盛煜, 于晖, 等. 祁连山中东部的冻土特征(Ⅱ):多年冻土特征[J]. 冰川冻土, 2007,29(3):426-432.

    Google Scholar

    [47] Wu J C, Sheng Y, Yu H, et al. Permafrost in the Middle-East Section of Qilian Mountains (Ⅱ): Characters of permafrost[J]. Journal of Glaciology and Geocryology, 2007,29(3):426-432.

    Google Scholar

    [48] 殷长春. 航空电磁理论与勘查技术[M]. 北京: 科学出版社, 2018.

    Google Scholar

    [49] Yin C C. Airborne electromagnetic theory and exploration technology [M]. Beijing: Science Press, 2018.

    Google Scholar

    [50] 王卫平, 王守坦. 频率域航空电磁法及应用[M]. 北京: 地质出版社, 2011.

    Google Scholar

    [51] Wang W P, Wang S T. Frequency domain airborne electromagnetic method and its applications [M]. Beijing: Geological Publishing House, 2011.

    Google Scholar

    [52] 黄威. 时间域航空电磁系统仿真与关键技术研究[D]. 长春:吉林大学, 2016.

    Google Scholar

    [53] Huang W. Time-domain Airborne Electromagnetic Simulation and Key Technologies[D]. Changchun: Jilin University, 2016.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(930) PDF downloads(156) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint