China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2022 Vol. 46, No. 2
Article Contents

SU Lin-Shuai, CAI Ming, ZHENG Zhan-Shu, XU Bao-Bao, LUO Ju-Sen, HU Yan-Jie, ZHANG Jing-Yu. 2022. Numerical simulation of the effects of borehole enlargement on sonic logging response of horizontal wells. Geophysical and Geochemical Exploration, 46(2): 467-473. doi: 10.11720/wtyht.2022.2447
Citation: SU Lin-Shuai, CAI Ming, ZHENG Zhan-Shu, XU Bao-Bao, LUO Ju-Sen, HU Yan-Jie, ZHANG Jing-Yu. 2022. Numerical simulation of the effects of borehole enlargement on sonic logging response of horizontal wells. Geophysical and Geochemical Exploration, 46(2): 467-473. doi: 10.11720/wtyht.2022.2447

Numerical simulation of the effects of borehole enlargement on sonic logging response of horizontal wells

  • Horizontal well drilling is increasingly being widely applied. However, sonic logging-one of the most important reservoir assessment methods-tends to be affected by the borehole conditions in the application of horizontal wells,leading to notably reduced application effects.In view of this fact,this paper conducts the forward simulation of the radial and axial size changes induced by borehole enlargement and the changes in enlargement positions using the three-dimensional finite difference method,with the focus on the effects of borehole enlargement on the waveform amplitude,arrival times,and velocities of waves in the sonic logging of horizontal wells.The results are as follows.In the case that the borehole enlargement occurred between the sonic transmitter and the nearest receiver,the changes in borehole enlargement parameters had no effect on the measured results of the compressional and shear wave velocities but led to the notable decrease in waveform amplitude.The amplitude of compressional and shear waves decreased with an increase in the thickness and length of the enlargement cylinder but was almost not affected by the distance between the sonic transmitter and the expansion section.The compressional wave arrival time increased with an increase in the thickness and length of the enlargement cylinder but slightly decreased with an increase in the distance between the sonic transmitter and the expansion section.This study clarifies the laws of the effects of borehole enlargement on the sonic logging response of horizontal wells,and it will provide guidance and assistance for further research on the methods for influencing factor correction in the sonic logging of horizontal wells.
  • 加载中
  • [1] 吴月先, 钟水清, 徐永高, 等. 中国水平井技术实力现状及发展趋势[J]. 石油矿场机械, 2008, 37(3):33-36.

    Google Scholar

    [2] Wu Y X, Zhong S Q, Xu Y G, et al. Present condition of horizontal well technique strength and its development trend in China[J]. Oil Field Equipment, 2008, 37(3):33-36.

    Google Scholar

    [3] 章成广, 江万哲, 潘和平. 声波测井原理与应用[M]. 北京: 石油工业出版社, 2009.

    Google Scholar

    [4] Zhang C G, Jiang W Z, Pan H P. Principle and application of acoustic logging[M]. Beijing: Petroleum Industry Press, 2009.

    Google Scholar

    [5] 蔡明, 章成广, 韩闯, 等. 微裂缝对横波衰减影响的实验研究及其在致密砂岩裂缝评价中的应用[J]. 中国石油大学学报:自然科学版, 2020, 44(1):45-52.

    Google Scholar

    [6] Cai M, Zhang C G, Han C, et al. Experimental research of effect of microfracture on shear wave attenuation and its application on fracture evaluation in tight sand formation[J]. Journal of China University of Petroleum:Natural Science Edition, 2020, 44(1):45-52.

    Google Scholar

    [7] 蔡明, 章成广, 唐军, 等. 参数估计法声波远探测反射波提取效果影响因素研究[J]. 西安石油大学学报:自然科学版, 2020, 35(1):42-48.

    Google Scholar

    [8] Cai M, Zhang C G, Tang J, et al. Study on factors of influencing extraction effect of reflection wave in acoustic remote detection using parameter estimation method[J]. Journal of Xi'an Shiyou University:Natural Science Edition, 2020, 35(1):42-48.

    Google Scholar

    [9] Cai M, Qiao W, Ju X, et al. Lossless compression method for acoustic waveform data based on wavelet transform and bit-recombination mark coding[J]. Geophysics, 2013, 78(5):V219-V228.

    Google Scholar

    [10] 周灿灿, 王昌学. 水平井测井解释技术综述[J]. 地球物理学进展, 2006, 21(1):152-160.

    Google Scholar

    [11] Zhou C C, Wang C X. Technology review on the log interpretation of horizontal well[J]. Progress in Geophysics, 2006, 21(1):152-160.

    Google Scholar

    [12] Stephen R A, Cardo-Casas F, Cheng C H. Finite-difference synthetic acoustic logs[J]. Geophysics, 1985, 50(10):1588-1609.

    Google Scholar

    [13] Randall C J, Scheibner D J, Wu P T. Multipole borehole acoustic waveforms: Synthetic logs with beds and borehole washouts[J]. Geophysics, 1991, 56(11):1757-1769.

    Google Scholar

    [14] Chen N Y. Borehole wave propagation in isotropic and anisotropic media:Three-dimensional finite difference approach[D]. Cambridge: Massachusetts Institute of Technology, 1994.

    Google Scholar

    [15] Mittet R, Renlie L. High-order,finite-difference modeling of multipole logging in formations with anisotropic attenuation and elasticity[J]. Geophysics, 1996, 61(1):21-33.

    Google Scholar

    [16] 陶果, 张友生, 张洪娥, 等. 用于声波测井的大型三维有限差分模拟程序[J]. 测井技术, 2001, 25(4):273-277.

    Google Scholar

    [17] Tao G, Zhang Y S, Zhang H E, et al. 3D Finite difference simulating program for acoustic logging[J]. Well Logging Technology, 2001, 25(4):273-277.

    Google Scholar

    [18] 陶果, 何峰江, 王兵, 等. 声反射成像测井在地层中的三维波场模拟方法研究[J]. 中国科学D辑:地球科学, 2008, 38(S1):166-173.

    Google Scholar

    [19] Tao G, He F J, Wang B, et al. Study on 3D wave field simulation of acoustic reflection imaging logging in formation[J]. Science of China Series D:Earth Science, 2008, 38(S1):166-173.

    Google Scholar

    [20] 陈德华, 丛健生, 徐德龙, 等. 裂缝性地层中的井孔声场模拟[J]. 大庆石油学院学报, 2004, 28(3):4-6.

    Google Scholar

    [21] Chen D H, Cong J S, Xu D L, et al. Borehole acoustic field simulation in fractured formation[J]. Journal of Daqing Petroleum Institute, 2004, 28(3):4-6.

    Google Scholar

    [22] 何峰江, 陶果, 王锡莉. 贴井壁声波测井仪的有限差分模拟研究[J]. 地球物理学报, 2006, 49(3):923-928.

    Google Scholar

    [23] He F J, Tao G, Wang X L. Finite difference modeling of the acoustic field by sidewall logging devices[J]. Chinese J. Geophys., 2006, 49(3):923-928.

    Google Scholar

    [24] 丛健生, 乔文孝. 水平井地层界面声波测井响应模拟分析[J]. 测井技术, 2008, 32(1):29-32.

    Google Scholar

    [25] Cong J S, Qiao W X. Simulated response of acoustic log in horizontal borehole placing on interface of two formations[J]. Well Logging Technology, 2008, 32(1):29-32.

    Google Scholar

    [26] 陈木银, 何西攀, 金小慧. 水平井声波时差测井响应特征研究[J]. 国外测井技术, 2013(4):38-41.

    Google Scholar

    [27] Chen M Y, He X P, Jin X H. Study on the characteristics of acoustic slowness difference logging response in horizontal wells[J]. World Well Logging Technology, 2013(4):38-41.

    Google Scholar

    [28] 杨歆. 水平井及大斜度井声波测井时差校正方法研究[D]. 北京: 中国石油大学(北京), 2016.

    Google Scholar

    [29] Yang X. Research on correction method of sonic logging slowness in horizontal wells and high angle deviated wells[D]. Beijing: China University of Petroleum (Beijing), 2016.

    Google Scholar

    [30] 张鹏云. 基于声电组合的水平井地层评价方法研究[D]. 青岛: 中国石油大学(华东), 2016.

    Google Scholar

    [31] Zhang P Y. Research on horizontal well formation evaluation method based on acoustic and resistivity logging[D]. Qingdao: China University of Petroleum(East China), 2016.

    Google Scholar

    [32] Liu H, Wang B, Tao G, et al. Study on the simulation of acoustic logging measurements in horizontal and deviated wells[J]. Applied Geophysics, 2017, 14(3):337-350.

    Google Scholar

    [33] 刘黎, 章成广, 蔡明, 等. 裂缝对井眼声波的传播影响规律研究[J]. 物探与化探, 2019, 43(6):1333-1340.

    Google Scholar

    [34] Liu L, Zhang C G, Cai M, et al. Studies on the effect of crack on the propagation of acoustic waves in wellbore[J]. Geophysical and Geochemical Exploration, 2019, 43(6):1333-1340.

    Google Scholar

    [35] 王秀明, 张海澜, 王东. 利用高阶交错网格有限差分法模拟地震波在非均匀孔隙介质中的传播[J]. 地球物理学报, 2003, 46(6):842-849.

    Google Scholar

    [36] Wang X M, Zhang H L, Wang D. Modelling of seismic wave propagation in heterogeneous poroelastic media using a high-order staggered finite-difference method[J]. Chinese J. Geophys., 2003, 46(6):842-849.

    Google Scholar

    [37] 严红勇, 刘洋. Kelvin-Voigt黏弹性介质地震波场数值模拟与衰减特征[J]. 物探与化探, 2012, 36(5):806-812.

    Google Scholar

    [38] Yan H Y, Liu Y. Numerical modeling and attenuation characteristics of seismic wavefield in Kelvin-Voigt viscoelastic media[J]. Geophysical and Geochemical Exploration, 2012, 36(5):806-812.

    Google Scholar

    [39] Komatitsch D, Martin R. An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation[J]. Geophysics, 2007, 72(5):SM155-SM167.

    Google Scholar

    [40] Martin R, Komatitsch D, Ezziani A. An unsplit convolutional perfectly matched layer improved at grazing incidence for seismic wave propagation in poroelastic media[J]. Geophysics, 2008, 73(4):T51-T61.

    Google Scholar

    [41] 廖扬强, 余庆. 大斜度井水平井井壁力学稳定性技术现状[J]. 钻采工艺, 2003, 26(3):13-16.

    Google Scholar

    [42] Liao Y Q, Yu Q. Technical status of wellbore mechanical stability of horizontal well with large inclination[J]. Drilling Process, 2003, 26(3):13-16.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(786) PDF downloads(320) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint