China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2022 Vol. 46, No. 5
Article Contents

ZHANG Wen-Bo, ZHANG Ying, LI Jian-Hui. 2022. A 1D inversion system of the ground-based loop-source transient electromagnetic method. Geophysical and Geochemical Exploration, 46(5): 1258-1266. doi: 10.11720/wtyht.2022.1696
Citation: ZHANG Wen-Bo, ZHANG Ying, LI Jian-Hui. 2022. A 1D inversion system of the ground-based loop-source transient electromagnetic method. Geophysical and Geochemical Exploration, 46(5): 1258-1266. doi: 10.11720/wtyht.2022.1696

A 1D inversion system of the ground-based loop-source transient electromagnetic method

  • The processing and interpretation of the data derived using the transient electromagnetic (TEM) method are still mainly conducted through one-dimensional (1D) inversion presently. Therefore, developing an efficient and stable 1D inversion system with complete functions is greatly significant for further promoting the applications of the ground-based loop-source TEM method in China. This study developed such an inversion system, which involves four methods, namely minimum-structure inversion, Occam's inversion, laterally constrained inversion (LCI), and spatially constrained inversion (SCI). The first two methods are based on the Gauss-Newton method, and the others are based on the damped least-square method. This 1D inversion system was applied to detect the occurrence forms of the basalt rock masses in the Narenbaolige coalfield in Inner Mongolia. Then, the results derived from the minimum-structure inversion and Occam's inversion used in the 1D inversion system were compared with those obtained using the commercial software IX1D. As shown in the 2D pseudosection maps of resistivity obtained by these inversion methods, the basalt rock masses have similar occurrence forms and consistent resistivity range. Compared with drilling data, these 1D inversion results clearly reflected the distribution patterns of basalt rock masses in the Narenbaolige coalfield except for the upwelling channels of magmas. Afterward, the LCI and SCI were also applied to the coalfield. The results indicate a decrease in the resistivity differences of the basalt rock masses between adjacent survey points and an increase in the continuity of the interfaces between the basalts and sedimentary rocks.
  • 加载中
  • [1] Auken E, Christiansen A V, Kirkegaard C, et al. An overview of a highly versatile forward and stable inverse algorithm for airborne, ground-based and borehole electromagnetic and electric data[J]. Exploration Geophysics, 2015, 46(3): 223-235.

    Google Scholar

    [2] 殷长春, 刘云鹤, 熊彬. 地球物理三维电磁反演方法研究动态[J]. 中国科学:地球科学, 2020, 50(3):432-435.

    Google Scholar

    [3] Yin C C, Liu Y H, Xiong B. Status and prospect of 3D inversions in EM geophysics[J]. Science China Earth Sciences, 2020, 50(3): 432-435.

    Google Scholar

    [4] Smith J T, Booker J R. Magnetotelluric inversion for minimum structure[J]. Geophysics, 1988, 53(12): 1565-1576.

    Google Scholar

    [5] 李帝铨, 王光杰, 底青云, 等. 基于遗传算法的CSAMT最小构造反演[J]. 地球物理学报, 2008, 51(4):1234-1245.

    Google Scholar

    [6] Li D Q, Wang G J, Di Q Y, et al. The application of genetic algorithm to CSAMT inversion for minimum structure[J]. Chinese Journal of Geophysics, 2008, 51(4): 1234-1245.

    Google Scholar

    [7] Constable S C, Parker R L, Constable C G. Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data[J]. Geophysics, 1987, 52(3): 289-300.

    Google Scholar

    [8] Auken E, Christiansen A V. Layered and laterally constrained 2D inversion of resistivity data[J]. Geophysics, 2004, 69(3): 752-761.

    Google Scholar

    [9] Viezzoli V, Christiansen A V, Auken E, et al. Quasi-3D modeling of airborne TEM data by spatially constrained inversion[J]. Geophysics, 2008, 73(3): 105-113.

    Google Scholar

    [10] Farquharson C G, Oldenburg D W. Inversion of time-domain electromagnetic data for a horizontally layered earth[J]. Geophysical Journal International, 1993, 114(3): 433-442.

    Google Scholar

    [11] Farquharson C G, Oldenburg D W, Li Y G. An approximate inversion algorithm for time-domain electromagnetic surveys[J]. Journal of Applied Geophysics, 1999, 42(2): 71-80.

    Google Scholar

    [12] Yang D K, Oldenburg D W. Three-dimensional inversion of airborne time-domain electromagnetic data with applications to a porphyry deposit[J]. Geophysics, 2012, 77(2): B23-B34.

    Google Scholar

    [13] Scholl C, Helwig S L, Tezkan B, et al. 1-D multimodel joint inversion of TEM-data over multidimensional structures[J]. Geophysical Journal International, 2009, 176(1): 81-94.

    Google Scholar

    [14] Sudha, Tezkan B, Siemon B. Appraisal of a new 1D weighted joint inversion of ground based and helicopter-borne electromagnetic data[J]. Geophysical Prospecting, 2014, 62(3): 597-614.

    Google Scholar

    [15] Haroon A, Adrian J, Bergers R, et al. Joint inversion of long-offset and central-loop transient electromagnetic data: Application to a mud volcano exploration in Perekishkul, Azerbaijan[J]. Geophysical Prospecting, 2015, 63(2): 478-494.

    Google Scholar

    [16] Yogeshwar P, Küpper M, Tezkan B, et al. Innovative boat-towed transient electromagnetics—Investigation of the Furnas volcanic lake hydrothermal system, Azores[J]. Geophysics, 2020, 85(2): E41-E56.

    Google Scholar

    [17] Auken E, Christiansen A V, Jacobsen L H, et al. A resolution study of buried valleys using laterally constrained inversion of TEM data[J]. Journal of Applied Geophysics, 2008, 65(1): 10-20.

    Google Scholar

    [18] Kirkegaard C, Auken E. A parallel, scalable and memory efficient inversion code for very large-scale airborne electromagnetics surveys[J]. Geophysical Prospecting, 2015, 63(2): 495-507.

    Google Scholar

    [19] 殷长春, 邱长凯, 刘云鹤, 等. 时间域航空电磁数据加权横向约束反演[J]. 吉林大学学报:地球科学版, 2016, 46(1):254-261.

    Google Scholar

    [20] Yin C C, Qiu C K, Liu Y H, et al. Weighted laterally-constrained inversion of time-domain airborne electromagnetic data[J]. Journal of Jilin University:Earth Science Edition, 2016, 46(1): 254-261.

    Google Scholar

    [21] 殷长春, 朱姣, 邱长凯, 等. 航空电磁拟三维模型空间约束反演[J]. 地球物理学报, 2018, 61(6):2537-2547.

    Google Scholar

    [22] Yin C C, Zhu J, Qiu C K, et al. Spatially constrained inversion for airborne EM data using quasi-3D models[J]. Chinese Journal of Geophysics, 2018, 61(6): 2537-2547.

    Google Scholar

    [23] 齐彦福, 殷长春, 王若, 等. 多通道瞬变电磁m序列全时正演模拟与反演[J]. 地球物理学报, 2015, 58(7):2566-2577.

    Google Scholar

    [24] Qi Y F, Yin C C, Wang R, et al. Multi-transient EM full-time forward modeling and inversion of m-sequences[J]. Chinese Journal of Geophysics, 2015, 58(7): 2566-2577.

    Google Scholar

    [25] Li J F, Liu Y H, Yin C C, et al. Fast imaging of time-domain airborne EM data using deep learning technology[J]. Geophysics, 2020, 85(5): E163-E170.

    Google Scholar

    [26] Li Z H, Huang Q H, Xie X B, et al. A generic 1D forward modeling and inversion algorithm for TEM sounding with an arbitrary horizontal loop[J]. Pure and Applied Geophysics, 2016, 173(8): 2869-2883.

    Google Scholar

    [27] Li M X, Cheng J L, Wang P, et al. Transient electromagnetic inversion based on the PSO-DLS combination algorithm[J]. Exploration Geophysics, 2019, 50(5): 472-480.

    Google Scholar

    [28] 孙怀凤, 张诺亚, 柳尚斌, 等. 基于L1范数的瞬变电磁非线性反演[J]. 地球物理学报, 2019, 62(12):4860-4873.

    Google Scholar

    [29] Sun H F, Zhang N Y, Liu S B, et al. L1-norm based nonlinear inversion of transient electromagnetic data[J]. Chinese Journal of Geophysics, 2019, 62(12): 4860-4873.

    Google Scholar

    [30] Key K. 1D inversion of multicomponent, multifrequency marine CSEM data: Methodology and synthetic studies for resolving thin resistive layers[J]. Geophysics, 2009, 74(2): 9-20.

    Google Scholar

    [31] Anderson W L. Fourier cosine and sine transforms using lagged convolutions in double-precision (subprograms DLAGF0/DLAGF1)[R]. U.S. Geological Survey, 1983:83-320.

    Google Scholar

    [32] 李建慧, 朱自强, 刘树才, 等. 基于Gaver-Stehfest算法的矩形发射回线激发的瞬变电磁场[J]. 石油地球物理勘探, 2011, 46(3):489-492.

    Google Scholar

    [33] Li J H, Zhu Z Q, Liu S C, et al. Rectangular loop transient electromagnetic field expressed by Gaver-Stehfest algorithm[J]. Oil Geophysical Prospecting, 2011, 46(3): 489-492.

    Google Scholar

    [34] Li J H, Farquharson C G, Hu X Y. Three effective inverse Laplace transform algorithms for computing time-domain electromagnetic responses[J]. Geophysics, 2016, 81(2): E113-E128.

    Google Scholar

    [35] Aster R C, Borchers B, Thurber C H. Parameter Estimation and Inverse Problems[M]. Amsterdam: Elsevier Academic Press, 2005.

    Google Scholar

    [36] Haber E. Computational methods in geophysical electromagnetics[M]. Philadelphia: SIAM. 2015.

    Google Scholar

    [37] 李建慧. 基于矢量有限单元法的大回线源瞬变电磁法三维数值模拟[D]. 长沙: 中南大学, 2011.

    Google Scholar

    [38] Li J H. 3D numerical simulation for transient electromagnetic field excited by large Source loop based on vector finite element method[D]. Changsha: Central South University, 2011.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(470) PDF downloads(65) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint