China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2022 Vol. 46, No. 6
Article Contents

QI Qing-Xin, XI Zhen-Zhu, XU Yu, MU Ren. 2022. A method for determining the position of zero magnetic flux plane of antennae using the opposing-coils transient electromagnetic method. Geophysical and Geochemical Exploration, 46(6): 1540-1544. doi: 10.11720/wtyht.2022.1599
Citation: QI Qing-Xin, XI Zhen-Zhu, XU Yu, MU Ren. 2022. A method for determining the position of zero magnetic flux plane of antennae using the opposing-coils transient electromagnetic method. Geophysical and Geochemical Exploration, 46(6): 1540-1544. doi: 10.11720/wtyht.2022.1599

A method for determining the position of zero magnetic flux plane of antennae using the opposing-coils transient electromagnetic method

  • Determining the geometric position of the zero magnetic flux plane is the key to the detection system of the opposing-coils transient electromagnetic method (opposing-coils TEM). Given this, a zeroing method was proposed in this study. First, an opposing-coils transient electromagnetometer was used to continuously send the bipolar square wave of fixed frequency. Then, the receiver collected the time domain signals of the receiving antenna in real time, and the discrete Fourier transform was used to calculate the minimum power spectral density (A1, A2 and A3) at the roughly-, finely-, and micro-tuned receiving antenna positions. When A1>A2>A3, the receiving antenna was in the zero magnetic flux plane. Finally, the test results of transmitting 20 kHz bipolar square wave showed that the transition process of the attenuation signals of the secondary field can be significantly improved under the condition of A1>A2>A3.
  • 加载中
  • [1] Wait J R. On the theory of transient electromagnetic sounding over a stratified[J]. Canadian Journal of Physics, 1972, 50(11):1055-1061.

    Google Scholar

    [2] Kaufman A A, Keller G V. Frequency and transient sounding[J]. Elsevier Methods in Geochemistry & Geophysics, 1983.

    Google Scholar

    [3] Nabighian M N. Quasi-static transient response of a conducting half-space:An approximate representation[J]. Geophysics, 1979, 44(10):1700-1705.

    Google Scholar

    [4] Nabighian M N, Macnae J C. Time domain electromagnetic prospecting methods[M]// Electromagnetic Methods in Applied Geophysics, 1991:427-520.

    Google Scholar

    [5] 蒋邦远. 实用近区磁源瞬变电磁法勘探[M]. 北京: 地质出版社, 1998.

    Google Scholar

    [6] Jiang B Y. Practical transient electromagnetic method prospecting in near zone of magnetic dipole source[M]. Beijing: Geological Publishing House, 1998.

    Google Scholar

    [7] 李貅, 郭文波, 李毓茂. 瞬变电磁法在煤田矿井涌水通道勘察中的应用[J]. 地球科学与环境学报, 2000, 22(3):35-38.

    Google Scholar

    [8] Li X, Guo W B, Li Y M. Application TEM to exploration of water gushing channelway in coal field[J]. Journal of Earth Science and Environment, 2000, 22(3):35-38.

    Google Scholar

    [9] Eyórsson E. The Transient Electromagnetic method (TEM) in geothermal exploration:Processing and 1D inversion of a TEM sounding from Reykjanes, SW-Iceland[J]. Indiana University Mathematics Journal, 2015, 49(1):A35.

    Google Scholar

    [10] 嵇艳鞠, 林君, 朱凯光, 等. 利用瞬变电磁技术进行地下水资源勘察[J]. 地球物理学进展, 2005, 20(3):828-833.

    Google Scholar

    [11] Ji Y J, Lin J, Zhu K G, et al. Underground water prospecting by Transient electromagnetic method[J]. Progress in Geophysics, 2005, 20(3):828-833.

    Google Scholar

    [12] 薛国强, 李貅, 底青云. 瞬变电磁法理论与应用研究进展[J]. 地球物理学进展, 2007, 22(4):1195-1200.

    Google Scholar

    [13] Xue G Q, Li X, Di Q Y. The progress of TEM in theory and application[J]. Progress in Geophysics, 2007, 22(4):1195-1200.

    Google Scholar

    [14] 薛国强, 于景邨. 瞬变电磁法在煤炭领域的研究与应用新进展[J]. 地球物理学进展, 2017, 32(1):319-326.

    Google Scholar

    [15] Xue G Q, Yu J C. New development of TEM research and application in coal mine exploration[J]. Progress in Geophysics, 2017, 32(1):319-326.

    Google Scholar

    [16] 底青云, 朱日祥, 薛国强, 等. 我国深地资源电磁探测新技术研究进展[J]. 地球物理学报, 2019, 62(6): 2128-2138.

    Google Scholar

    [17] Di Q Y, Zhu R X, Xue G Q, et al. New development of the electromagnetic(EM) methods for deep exploration[J]. Chinese Journal of Geophysics, 2019, 62(6):2128-2138.

    Google Scholar

    [18] 闫述, 薛国强, 陈明生. 大回线源瞬变电磁响应理论研究回顾及展望[J]. 地球物理学进展, 2011, 26(3):941-947.

    Google Scholar

    [19] Yan S, Xue G Q, Chen M S. Review and perspective of theoretical study on Large-loop TEM response[J]. Progress in Geophysics, 2011, 26(3):941-947.

    Google Scholar

    [20] 李貅. 瞬变电磁测深的理论与应用[M]. 西安: 陕西科学技术出版社, 2002:102-105.

    Google Scholar

    [21] Li X. Theory and application of transient electromagnetic sounding[M]. Xi'an: ShaanXi Science and Technology Press, 2002:102-105.

    Google Scholar

    [22] Telford W M, Geldart L P, Sheriff R E. Applied geophysics[M]. Cambridge: Cambridge University Press, 1990.

    Google Scholar

    [23] 嵇艳鞠, 林君, 于生宝, 等. ATTEM系统中电流关断期间瞬变电磁场响应求解的研究[J]. 地球物理学报, 2006, 49(6): 1884-1890.

    Google Scholar

    [24] Ji Y J, Lin J, Yu S B, et al. A study on solution of transient electromagnetic response during transmitting current turn-off in the ATTEM system[J]. Chinese Journal of Geophysics, 2006, 49(6):1884-1890.

    Google Scholar

    [25] 王华军. 阻尼系数对瞬变电磁观测信号的影响特征[J]. 地球物理学报, 2010, 53(2):428-434.

    Google Scholar

    [26] Wang H J. Characteristics of damping coefficient effect on transient electromagnetic signal[J]. Chinese Journal of Geophysics, 2010, 53(2):428-434.

    Google Scholar

    [27] Smith R S, Balch S J. Robust estimation of the band-limited inductive limit response from impulse-response TEM measurements taken during the transmitter switch-off and the transmitter off-time[J]. Geophysics, 2000, 65(2):476-481.

    Google Scholar

    [28] 嵇艳鞠, 林君, 王忠. 瞬变电磁接收装置对浅层探测的畸变分析与数值剔除[J]. 地球物理学进展, 2007, 22(1):262-267.

    Google Scholar

    [29] Ji Y J, Lin J, Wang Z. Research on distortion of whole transient field in shallow transient electromagnetic method[J]. Progress in Geophysics, 2007, 22(1): 262-267.

    Google Scholar

    [30] Walker S E, Rudd J. Extracting more information from on-time data: SEG Extended Abstracts[C]// 20th Geophysical Conference, 2009:1-8.

    Google Scholar

    [31] 范涛, 赵兆, 吴海, 等. 矿井瞬变电磁多匝回线电感影响消除及曲线偏移研究[J]. 煤炭学报, 2014, 39(5):932-940.

    Google Scholar

    [32] Fan T, Zhao Z, Wu H, et al. Research on inductance effect removing and curve offset for mine TEM with multi small loops[J]. Journal of China Coal Society, 2014, 39(5):932-940.

    Google Scholar

    [33] Yang H Y, Li F P, Yue J H, et al. Cone-shaped source characteristics and inductance effect of transient electromagnetic method[J]. Applied Geophysics:English Version, 2017(1):165-174.

    Google Scholar

    [34] Xi Z Z, Long X, Huang L, et al. Opposing-coils transient electromagnetic method focused near-surface resolution[J]. Geophysics, 2016, 81(5):E279-E285.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(589) PDF downloads(158) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint