China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2022 Vol. 46, No. 6
Article Contents

ZHANG Jian, FENG Xu-Liang, YUE Xiang-Ping. 2022. Application of comprehensive geophysical prospecting method in detecting concealed karst collapses. Geophysical and Geochemical Exploration, 46(6): 1403-1410. doi: 10.11720/wtyht.2022.1566
Citation: ZHANG Jian, FENG Xu-Liang, YUE Xiang-Ping. 2022. Application of comprehensive geophysical prospecting method in detecting concealed karst collapses. Geophysical and Geochemical Exploration, 46(6): 1403-1410. doi: 10.11720/wtyht.2022.1566

Application of comprehensive geophysical prospecting method in detecting concealed karst collapses

  • Karst is widely distributed in China. However, geological disasters frequently occur in karst zones due to the fragile geological environment, which seriously threatens the safety of people’s life and property and cause huge economic losses. In this study, the controlled source audio-frequency magnetotelluric (CSAMT) method and microgravity were used to extract residual gravity anomalies through the two-dimensional inversion of pseudosections and multi-scale wavelet analysis. As a result, rock-soil interfaces of karst zones and the development zones of strong karst were well divided; the locations, burial depths, scales, and spatial distribution of karst caves were delineated. As verified by drilling, the rock-soil interfaces and strong-karst development zones determined by CSAMT interpretation were roughly consistent with those revealed by boreholes, and the sizes and burial depths of collapsed karst caves that were delineated by microgravity roughly correspond to those revealed by boreholes of engineering exploration. These results show that the CSAMT combined with the microgravity method can achieve significant effects in the detection of concealed karst collapses and serves as a scientific detection method for the early warning of the prevention and treatment of potential karst collapses and similar geological disasters.
  • 加载中
  • [1] 李大通, 罗雁. 中国碳酸盐岩分布面积测量[J]. 中国岩溶, 1983(2):61-64.

    Google Scholar

    [2] Li D T, Luo Y. Measurement of the distribution area of carbonate rock in China[J]. Chinese Karst, 1983(2):61-64.

    Google Scholar

    [3] 袁道先, 朱德浩, 翁金桃, 等. 中国岩溶学[M]. 北京: 地质出版社, 1993.

    Google Scholar

    [4] Yuan D X, Zhu D H, Wen J T, et al. Karst science in China[M]. Beijing: Geology Press, 1993.

    Google Scholar

    [5] 蒋忠诚, 裴建国, 夏日元, 等. 我国“十一五”期间的岩溶研究进展与重要活动[J]. 中国岩溶, 2010, 29(4):349-354.

    Google Scholar

    [6] Jiang Z C, Pei J G, Xia R Y, et al. The progress and important activities of karst research during the 11th five-year plan period in China[J]. Chinese Karst, 2010, 29(4):349-354.

    Google Scholar

    [7] 蒙彦, 雷明堂. 岩溶塌陷研究现状及趋势分析[J]. 中国岩溶, 2019, 38(3):411-417.

    Google Scholar

    [8] Meng Y, Lei M T. Analysis of the current situation and trend of karst collapse research[J]. Chinese Karst, 2019, 38(3):411-417.

    Google Scholar

    [9] 刘崧. 物探方法在岩溶勘查中的应用综述[J]. 地质科技情报, 1997(2):86-92.

    Google Scholar

    [10] Liu S. A review of the application of geophysical methods in karst exploration[J]. Geological Scientific Information, 1997(2):86-92.

    Google Scholar

    [11] 胡让全, 黄健民. 综合物探方法在广州市金沙洲岩溶地面塌陷、地面沉降地质灾害调查中的应用[J]. 物探与化探, 2014, 38(3):610-615.

    Google Scholar

    [12] Hu R Q, Huang J M. The application of comprehensive prospecting method in the investigation of geological disasters of karst subsidence and subsidence in Jinshazhou, Guangzhou[J]. Geophysical Exploration and Geochemical Exploration, 2014, 38(3):610-615.

    Google Scholar

    [13] 岳想平, 彭小珂, 韩埃洋. CSAMT在水文地质勘查中的应用[J]. 地下水, 2020, 42(6):102-105.

    Google Scholar

    [14] Yue X P, Peng X K, Han A Y. Application of CSAMT in hydrogeological survey[J]. Groundwater, 2020, 42(6):102-105.

    Google Scholar

    [15] 岳想平, 何萌, 彭小珂. CSAMT在探测隐伏断裂构造与岩层划分中的应用[J]. 甘肃地质, 2018, 27(2):93-97.

    Google Scholar

    [16] Yue X P, He M, Peng X K. The application of CSAMT in detecting the formation of hidden fracture and the division of rock formations[J]. Gansu Geology, 2018, 27(2):93-97.

    Google Scholar

    [17] 贾民育. 微重力测量技术的应用[J]. 地震研究, 2000, 23(4):452-456.

    Google Scholar

    [18] Jia M Y. Application of microgravity measurement technology[J]. Seismic Research, 2000, 23(4):452-456.

    Google Scholar

    [19] 刘芳, 祝意青, 陈石. 华北时变重力场离散小波多尺度分解[J]. 中国地震, 2013, 29(1):124-131.

    Google Scholar

    [20] Liu F, Zhu Y Q, Chen S. The discrete wavelets of the variable gravity field in North China are decomposed on a multiscale scale[J]. China Earthquake, 2013, 29(1):124-131.

    Google Scholar

    [21] 杨文采, 施志群, 侯遵泽, 等. 离散小波变换与重力异常多重分解[J]. 地球物理学报, 2001, 44(4):534-541,582.

    Google Scholar

    [22] Yang W C, Shi Z Q, Hou Z Z, et al. Discrete wavelet transformation and gravity anomaly multi-decomposition[J]. Journal of Geophysics, 2001, 44(4):534-541,582.

    Google Scholar

    [23] 杨文采, 郭爱缨, 谢玉清, 等. 重磁异常在频率域的解释方法(上)[J]. 物化探电子计算技术, 1979(1):1-16.

    Google Scholar

    [24] Yang W C, Guo A Y, Xie Y Q, et al. Method of interpretation of heavy magnetic anomalies in the frequency domain (above)[J]. Physical Exploration Electronic Computing Technology, 1979(1):1-16.

    Google Scholar

    [25] 侯遵泽, 杨文采, 王允, 等. 重力场实数尺度小波分解及其应用[J]. 地球物理学报, 2015, 58(3):1035-1041.

    Google Scholar

    [26] Hou Z Z, Yang W C, Wang Y, et al. The decomposition and application of real-scale wavelets in gravity field[J]. Journal of Geophysics, 2015, 58(3):1035-1041.

    Google Scholar

    [27] 吴咏敬, 董平, 王良书, 等. 东北地区构造分区与深断裂研究——基于重力场小波多尺度分解[J]. 地球物理学进展, 2012, 27(1):45-57.

    Google Scholar

    [28] Wu Y J, Dong P, Wang L S, et al. The study of tectonic zoning and deep fracture in Northeast China—Multi-scale decomposition based on small waves of gravitational field[J]. Advances in Geophysics, 2012, 27(1):45-57.

    Google Scholar

    [29] 刁博, 王家林, 程顺有. 重力异常小波多分辨分析分解阶次的确定[J]. 地球科学:中国地质大学学报, 2007(4):564-568.

    Google Scholar

    [30] Diao B, Wang J L, Chen S Y. Gravitational anomaly wavelet multi-resolution analysis of decomposition order[J]. Earth Science:Journal of China University of Geology, 2007(4):564-568.

    Google Scholar

    [31] 陈玉玲, 韩凯, 陈贻祥, 等. 可控源音频大地电磁法在岩溶塌陷勘察中的应用[J]. 地球物理学进展, 2015, 30(6):2616-2622.

    Google Scholar

    [32] Chen Y L, Han K, Chen Y X, et al. Application of controlled source audio geomagnetic method in karst collapse survey[J]. Advances in Geophysics, 2015, 30(6):2616-2622.

    Google Scholar

    [33] 邓中俊, 杨玉波, 姚成林, 等. 综合物探在地面塌陷区探测中的应用[J]. 物探与化探, 2019, 43(2):441-448.

    Google Scholar

    [34] Deng Z J, Yang Y B, Yao C L, et al. Application of integrated exploration in ground subsidence detection[J]. Geophysical Exploration and Geochemical Exploration, 2019, 43(2):441-448.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(982) PDF downloads(127) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint