China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2022 Vol. 46, No. 6
Article Contents

LIANG Yu-Dong, REN Kang-Hui, JIANG Xin, DING Bao-Yan, TONG Pin-Xian, HU Pei-Qing. 2022. Application of the activated charcoal radon measurement in the geothermal exploration:A study of the Zhangye-Minle basin. Geophysical and Geochemical Exploration, 46(6): 1419-1424. doi: 10.11720/wtyht.2022.1514
Citation: LIANG Yu-Dong, REN Kang-Hui, JIANG Xin, DING Bao-Yan, TONG Pin-Xian, HU Pei-Qing. 2022. Application of the activated charcoal radon measurement in the geothermal exploration:A study of the Zhangye-Minle basin. Geophysical and Geochemical Exploration, 46(6): 1419-1424. doi: 10.11720/wtyht.2022.1514

Application of the activated charcoal radon measurement in the geothermal exploration:A study of the Zhangye-Minle basin

  • Geothermal energy mainly migrates and accumulates along fractured zones. Ascertaining the faults in the study area is an important goal of geothermal exploration. Many faults are distributed in the Zhangye-Minle basin. They are deeply buried and are difficult to find on the surface. The special geological conditions make it difficult to fully utilize the advantages of conventional geophysical methods. By contrast, the activated charcoal radon measurement features strong anti-interference, large detection depth, and low cost, which are unique advantages in detecting concealed structures. This study investigated the concealed structures in the Zhangye-Minle basin using the activated charcoal radon measurement. Through the trend analysis of measured radon concentrations, this study extracted local anomalies and determined the favorable parts for the geothermal water exploration in the study area, creating conditions for further drilling and shallow artificial seismic exploration.
  • 加载中
  • [1] 王天才, 熊英举. AMT-CSAMT两种方法在石阡县中坝地热勘查中的应用[J]. 西部资源, 2020, 106(2):89-90,93.

    Google Scholar

    [2] Wang T C, Xiong Y J. Application of two methods of AMT-CSAMT in geothermal exploration in Zhongba, Shiqian County[J]. Western Resources, 2020, 106(2):89-90,93.

    Google Scholar

    [3] 侯玉新, 慕秀琴. 神堂沟地热田形成与地质构造的关系[J]. 中国煤田地质, 2004, 16(6):25-26,38.

    Google Scholar

    [4] Hou Y X, Mu X Q. The relationship between the formation of Shentangou geothermal field and geological structure[J]. China Coalfield Geology, 2004, 16(6):25-26,38.

    Google Scholar

    [5] Wang Y J, Ma F, Xie H P, et al. Fracture characteristics and heat accumulation of Jixianian carbonate reservoirs in the Rongcheng geothermal field, Xiong'an New Area[J]. Acta Geologica Sinica, 2021, 95(6):1902-1914.

    Google Scholar

    [6] 刘明辉, 薛建, 王者江, 等. 工程场地隐伏断裂的探测与地震活动性评价[J]. 物探与化探, 2018, 42(4):839-845.

    Google Scholar

    [7] Liu M H, Xue J, Wang Z J, et al. Detection and seismic activity evaluation of hidden fractures in engineering sites[J]. Geophysical and Geochemical Exploration, 2018, 42(4):839-845.

    Google Scholar

    [8] 宋启文, 张醒. 地热资源勘查中的综合物探方法研究[J]. 冶金与材料, 2019, 39(4):36-37.

    Google Scholar

    [9] Song Q W, Zhang X. Research on integrated physical prospecting methods in geothermal resource exploration[J]. Metallurgy and Materials, 2019, 39(4):36-37.

    Google Scholar

    [10] 郭鹏文, 王飞. 土壤氡气测量在调查矿山断裂中的应用[J]. 世界有色金属, 2021(6):153-154.

    Google Scholar

    [11] Guo P W, Wang F. Application of soil radon gas measurement in the investigation of mine fractures[J]. World Nonferrous Metals, 2021(6):153-154.

    Google Scholar

    [12] 张晗, 卢玮, 黄烜, 等. 综合地球物理方法在范县地热勘查中对比试验研究[J]. 地质装备, 2021, 22(4):15-23.

    Google Scholar

    [13] Zhang H, Lu W, Huang X, et al. Comparative experimental study of integrated geophysical methods in geothermal exploration in Fan County[J]. Geological Equipment, 2021, 22(4):15-23.

    Google Scholar

    [14] Zhang X J, Zhang H Y, Cao Z Y. Genetic analysis and resource evaluation of Dazhuang geothermal reservoir in the Minle Basin[J]. Arabian Journal of Geosciences, 2021, 14(9):1-13.

    Google Scholar

    [15] 林长城, 丁文龙, 丛森, 等. 甘肃民乐盆地构造特征分析[J]. 煤炭技术, 2018, 37(8):106-108.

    Google Scholar

    [16] Lin C C, Ding W L, Cong S, et al. Analysis of tectonic features in the Minle Basin, Gansu[J]. Coal Technology, 2018, 37(8):106-108.

    Google Scholar

    [17] 尹政, 柳永刚, 张旭儒, 等. 张掖—民乐盆地中新生界地层结构及对地热的控制作用[J]. 甘肃地质, 2021, 30(3):49-56.

    Google Scholar

    [18] Yin Z, Liu Y G, Zhang X R, et al. Stratigraphic structure and control of geothermal heat in the middle Cenozoic of the Zhangye-Minle Basin[J]. Geology of Gansu, 2021, 30(3):49-56.

    Google Scholar

    [19] 李彩霞, 李永恒, 童品贤. 民乐县生态园地热流体化学特征评价[J]. 资源信息与工程, 2021, 36(2):33-35.

    Google Scholar

    [20] Li C X, Li Y H, Tong P X. Evaluation of geothermal fluid chemistry characteristics of Minle County Ecological Park[J]. Resource Information and Engineering, 2021, 36(2):33-35.

    Google Scholar

    [21] 俞兆虎, 滕汉仁, 李百祥. 张掖—民乐盆地地质—地球物理信息揭示的地热资源前景与勘查方法优化组合[J]. 甘肃地质, 2018, 27(s1):79-84.

    Google Scholar

    [22] Yu Z H, Teng H R, Li B X. Prospective geothermal resources revealed by geological-geophysical information in Zhangye-Minle basin and optimal combination of exploration methods[J]. Gansu Geology, 2018, 27(s1):79-84.

    Google Scholar

    [23] 张浩宇. 综合物探法在甘肃省民乐县地热资源勘探中的应用[D]. 太原: 太原理工大学, 2021.

    Google Scholar

    [24] Zhang H Y. Application of integrated physical prospecting method in geothermal resource exploration in Minle County, Gansu Province[D]. Taiyuan: Taiyuan University of Technology, 2021.

    Google Scholar

    [25] 王具文, 张旭儒, 宁天祥, 等. 张掖盆地地热资源地质特征分析与研究[J]. 地下水, 2019, 41(3):5-6,27.

    Google Scholar

    [26] Wang J W, Zhang X R, Ning T X, et al. Geological characteristics of geothermal resources in the Zhangye Basin[J]. Groundwater, 2019, 41(3):5-6,27.

    Google Scholar

    [27] 韦祖宁. 民乐盆地地热水特征及成因[D]. 兰州: 兰州大学, 2021.

    Google Scholar

    [28] Wei Z N. Characteristics and genesis of geothermal water in the Minle Basin[D]. Lanzhou: Lanzhou University, 2021.

    Google Scholar

    [29] 李俊, 王亚璐, 齐志龙. 氡气、气汞测量在地热田断裂研究中的应用[J]. 新疆地质, 2017, 35(s1):166-171.

    Google Scholar

    [30] Li J, Wang Y L, Qi Z L. Application of radon and gas-mercury measurements in geothermal field fracture studies[J]. Xinjiang Geology, 2017, 35(s1):166-171.

    Google Scholar

    [31] 陈希泉, 陈颉, 罗先熔, 等. 地气(氡气)测量方法寻找隐伏含矿断裂试验[J]. 物探与化探, 2011, 35(6):817-820.

    Google Scholar

    [32] Chen X Q, Chen J, Luo X R, et al. The tentative application of the geogas (radon) measuring method to the prospecting for concealed ore-bearing fractures[J]. Geophysical and Geochemical Exploration, 2011, 35(6):817-820.

    Google Scholar

    [33] 郎文霞, 刘鸿福. 活性炭测氡法在活断层探测中的应用[J]. 山西煤炭, 2012, 32(5):67-68.

    Google Scholar

    [34] Lang W X, Liu H F. Application of activated carbon radon measurement method in active fault detection[J]. Shanxi Coal, 2012, 32(5):67-68.

    Google Scholar

    [35] 丁保艳, 梁雨东, 童品贤, 等. 活性炭测氡法在张掖-民乐盆地隐伏断层测量中实验条件研究[J]. 甘肃地质, 2021, 30(4):75-79.

    Google Scholar

    [36] Ding B Y, Liang Y D, Tong P X, et al. Experimental study on radon measurement with activated carbon in concealed faults of Zhangye-Minle Basin[J]. Gansu geology, 2021, 30(4):75-79.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(512) PDF downloads(75) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint