[1] |
章术, 尹亮先, 首照兵. 贵州铜仁地区页岩气钻井施工难点及对策[J]. 探矿工程, 2017, 44(5):10-13.
Google Scholar
|
[2] |
Zhang S, Yin L X, Shou Z B. Difficulties of Shale Gas Well Drilling Construction in Tonggren of Guizhou and the Countermeasures[J]. Exploration Engineering, 2017, 44(5): 10-13.
Google Scholar
|
[3] |
周晓庆, 薛强, 罗杰. 四川盆地天然气钻前工程选址风险识别与防控措施[J]. 天然气工业, 2012, 32(8):105-107,136.
Google Scholar
|
[4] |
Zhou X Q, Xue Q, Luo J. Risk identification and prevention measures for pre-drilling site selection in the Sichuan Basin[J]. Natural Gas Industry, 2012, 32(8): 105-107,136.
Google Scholar
|
[5] |
王佳龙, 邸兵叶, 张宝松, 等. 音频大地电磁法在地热勘查中的应用——以福建省宁化县黄泥桥地区为例[J]. 物探与化探, 2021, 45(3):576-582.
Google Scholar
|
[6] |
Wang J L, Di B Y, Zhang B S, et al. The application of audio frequency magnetotelluric method to the geothermal exploration: A case study of Huangniqiao area, Ninghua County, Fujian Province[J]. Geophysical and Geochemical Exploration, 2021, 45(3): 576-582.
Google Scholar
|
[7] |
赵广学, 阮帅, 吴肃元. 隧道勘探AMT 数据二维非线性共轭梯度反演的关键参数探讨[J]. 物探与化探, 2021, 45(2):480-489.
Google Scholar
|
[8] |
Zhao G X, Ruan S, Wu S Y. Researches on the selection of key parameters in AMT 2D nonlinear conjugate inversion for railway tunnel exploration[J]. Geophysical and Geochemical Exploration, 2021, 45(2): 480-489.
Google Scholar
|
[9] |
杨剑, 李华, 王桥, 等. 综合地球物理勘探快速获取城市待建区浅部三维地质特征:以成都市天府新区独角兽岛为例[J]. 地球物理学进展, 2021, 36(4):1751-1759.
Google Scholar
|
[10] |
Yang J, Li H, Wang Q, et al. Rapid acquisition of shallow 3D geological features of undeveloped area in city by comprehensive Geophysical exploration:a case study on the Unicorn Island in Tianfu New District,Chengdu City[J]. Progress in Geophysics, 2021, 36(4): 1751-1759.
Google Scholar
|
[11] |
孟庆旺. 综合物探方法在嘉祥县青山省级地质公园溶洞勘察中的应用效果[J]. 物探与化探, 2020, 44(6):1464-1469.
Google Scholar
|
[12] |
Meng Q W. The application effect of comprehensive geophysical method in karst cave investigation of Qingshan Provincial Geopark in Jiaxiang County[J]. Geophysical and Geochemical Exploration, 2020, 44(6): 1464-1469.
Google Scholar
|
[13] |
杨天春, 王丹齐, 张叶鹏, 等. 生产矿山岩溶灾害勘查中的综合物探应用研究[J]. 地球物理学进展, 2021, 36(3):1145-1153.
Google Scholar
|
[14] |
Yang T C, Wang D Q, Zhang Y P, et al. Application research of comprehensive geophysical method to karst investigation in a productive mine[J]. Progress in Geophysics, 2021, 36(3): 1145-1153.
Google Scholar
|
[15] |
叶莉, 李非, 黄小年. 综合物探技术在东北公路工程多年冻土勘察中的应用与研究[J]. 灾害学, 2018, 33(S1):25-29.
Google Scholar
|
[16] |
Ye L, Li F, Huang X N. Application andr esearch of comprehensive geophysical prospecting technology in permafrost exploration of northeast highway project[J]. Journal of Catastrophology, 2018, 33(S1): 25-29.
Google Scholar
|
[17] |
黄毓铭, 张晓峰, 谢尚平, 等. 综合物探方法在南宁地铁溶洞探测中的应用[J]. 地球物理学进展, 2017, 32(3):1352-1359.
Google Scholar
|
[18] |
Huang Y M, Zhang X F, Xie S P, et al. Application of integrated geophysical method to Karst cave exploration of metro engineering in Nanning[J]. Progress in Geophysics, 2017, 32(3): 1352-1359.
Google Scholar
|
[19] |
高建华, 蔡耀军, 魏岩峻, 等. 综合物探在南水北调中线工程岩溶探测中的应用[J]. 工程地球物理学报, 2014, 11(4):533-536.
Google Scholar
|
[20] |
Gao J H, Cai Y J, Wei Y J, et al. The application of comprehensive geophysical prospecting to karst detection in South-to-North water diversion middle rroute projiect[J]. Chinese Journal of Engineering Geophysics, 2014, 11(4): 533-536.
Google Scholar
|
[21] |
李丹, 肖宽怀. 高密度电法在铁峰山2号隧道工程探测中的应用[J]. 工程地球物理学报, 2006, 3(3):197-200.
Google Scholar
|
[22] |
Li D, Xiao K H. High density electrical resistance exploration in the No.2 tiefengshan tunnel[J]. Chinese Journal of Engineering Geophysics, 2006, 3(3): 197-200.
Google Scholar
|
[23] |
孟凡松, 张刚, 陈梦君, 等. 高密度电阻率法二维勘探数据的三维反演及其在岩溶探测中的应用[J]. 物探与化探, 2019, 43(3):672-678.
Google Scholar
|
[24] |
Meng F S, Zhang G, Chen M J, et al. 3D inversion of high density resistivity method based on 2D high density electrical prospecting data and its engineering application[J]. Geophysical and Geochemical Exploration, 2019, 43(3): 672-678.
Google Scholar
|
[25] |
王喜迁, 孙明国, 张皓, 等. 高密度电法在岩溶探测中的应用[J]. 煤田地质与勘探, 2011, 39(5):72-75.
Google Scholar
|
[26] |
Wang X Q, Sun M G, Zhang H, et al. Application of high-density electrical technique in karst detection[J]. Coal Geology & Exploration, 2011, 39(5): 72-75.
Google Scholar
|
[27] |
马吉静. 高密度电阻率法的异常识别和推断——以溶洞探测和寻找地下水为例[J]. 地球物理学进展, 2019, 34(4):1489-1498.
Google Scholar
|
[28] |
Ma J J. Anomaly identification and inference of high density resistivity method:take karst cave exploration and groundwater exploration as an example[J]. Progress in Geophysics, 2019, 34(4): 1489-1498.
Google Scholar
|
[29] |
尚彦军, 金维浚, 肖刚, 等. AMT 和高密度电法结合探测稻城LHAASO 项目区隐伏断层和基岩埋深[J]. 地球物理学进展, 2021, 36(1):250-257.
Google Scholar
|
[30] |
Shang Y J, Jin W J, Xiao G, et al. Combination of AMT and high-density electrical method to detect buried fault and bedrock depth in the LHAASO field of Daocheng,Sichuan Province[J]. Progress in Geophysics, 2021, 36(1): 250-257.
Google Scholar
|
[31] |
陈乐寿, 王光锷. 大地电磁测深法[M]. 北京: 地质出版社, 1990.
Google Scholar
|
[32] |
Chen L S, Wang G E. Magnetotelluric Sounding Method[M]. Beijing: Geological Publishing House, 1990.
Google Scholar
|
[33] |
张启生. 音频大地电磁法原理及数据处理[J]. 内蒙古石油化工, 2010(19):26-28.
Google Scholar
|
[34] |
Zhang Q S. AMT principles and data processing[J]. Inner Mongolia Petrochemical Industry, 2010 (19): 26-28.
Google Scholar
|
[35] |
李富, 周洪福, 唐文清, 等. 物化探方法在隐伏活动断裂探测中综合研究——以安宁河秧财沟断裂为例[J]. 地球物理学进展, 2019, 34(3):1199-1205.
Google Scholar
|
[36] |
Li F, Zhou H F, Tang W Q, et al. Comprehensive study of geophysical and geochemical methods in detecting buried active faults: taking the Yangcaigou fault in Anning River as an example[J]. Progress in Geophysics, 2019, 34(3): 1199-1205.
Google Scholar
|
[37] |
甘伏平, 吕勇, 喻立平, 等. 氡气测量与CSAMT联合探测地下地质构造——以滇西潞西地区帕连,法帕剖面探测为例[J]. 地质通报, 2012, 31(2):389-395.
Google Scholar
|
[38] |
Gan F P, Lyu Y, Yu L P, et al. The utilization of combined radon and CSAMT methods to detect underground geological structures: a case study of detection in Palian and Fapa profiles, Luxi area, western Yunnan Province[J]. Geological Bulletin of China, 2012, 31(2): 389-395.
Google Scholar
|