China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2022 Vol. 46, No. 4
Article Contents

LUO Wei-Feng, HU Zhi-Fang, GAN Fu-Ping, ZHANG Qing-Yu, KANG Hai-Xia, ZHANG Yun-Xiao. 2022. Application of comprehensive geophysical prospecting method in well siting for shale gas exploration in carbonate areas in east China. Geophysical and Geochemical Exploration, 46(4): 824-829. doi: 10.11720/wtyht.2022.1505
Citation: LUO Wei-Feng, HU Zhi-Fang, GAN Fu-Ping, ZHANG Qing-Yu, KANG Hai-Xia, ZHANG Yun-Xiao. 2022. Application of comprehensive geophysical prospecting method in well siting for shale gas exploration in carbonate areas in east China. Geophysical and Geochemical Exploration, 46(4): 824-829. doi: 10.11720/wtyht.2022.1505

Application of comprehensive geophysical prospecting method in well siting for shale gas exploration in carbonate areas in east China

  • The drilling engineering for shale gas in carbonate areas in China is facing prominent carbonate karst. It is necessary to carry out near-surface geophysical prospecting before drilling and reasonably select the well locations in order to ensure the safety of the well site and reduce the drilling engineering risks. Taking the siting of Well Guirongye-1 in Rong'an County, Liuzhou City, Guangxi Province as an example, this study conducted the application research of well siting before drilling comprehensively using three geophysical prospecting methods, namely the high-density resistivity method, the audio-frequency magnetotellurics method, and radon survey, achieving satisfactory results. Well Guirongye-1 did not encounter a fault fracture zone near the surface, which is basically consistent with the interpretation results of comprehensive geophysical prospecting. This result indicates that the comprehensive geophysical prospecting method is feasible and effective in the siting of shale gas exploration wells in the carbonate areas in south China. This study will provide a certain reference for the well siting before drilling in similar areas in the future.
  • 加载中
  • [1] 章术, 尹亮先, 首照兵. 贵州铜仁地区页岩气钻井施工难点及对策[J]. 探矿工程, 2017, 44(5):10-13.

    Google Scholar

    [2] Zhang S, Yin L X, Shou Z B. Difficulties of Shale Gas Well Drilling Construction in Tonggren of Guizhou and the Countermeasures[J]. Exploration Engineering, 2017, 44(5): 10-13.

    Google Scholar

    [3] 周晓庆, 薛强, 罗杰. 四川盆地天然气钻前工程选址风险识别与防控措施[J]. 天然气工业, 2012, 32(8):105-107,136.

    Google Scholar

    [4] Zhou X Q, Xue Q, Luo J. Risk identification and prevention measures for pre-drilling site selection in the Sichuan Basin[J]. Natural Gas Industry, 2012, 32(8): 105-107,136.

    Google Scholar

    [5] 王佳龙, 邸兵叶, 张宝松, 等. 音频大地电磁法在地热勘查中的应用——以福建省宁化县黄泥桥地区为例[J]. 物探与化探, 2021, 45(3):576-582.

    Google Scholar

    [6] Wang J L, Di B Y, Zhang B S, et al. The application of audio frequency magnetotelluric method to the geothermal exploration: A case study of Huangniqiao area, Ninghua County, Fujian Province[J]. Geophysical and Geochemical Exploration, 2021, 45(3): 576-582.

    Google Scholar

    [7] 赵广学, 阮帅, 吴肃元. 隧道勘探AMT 数据二维非线性共轭梯度反演的关键参数探讨[J]. 物探与化探, 2021, 45(2):480-489.

    Google Scholar

    [8] Zhao G X, Ruan S, Wu S Y. Researches on the selection of key parameters in AMT 2D nonlinear conjugate inversion for railway tunnel exploration[J]. Geophysical and Geochemical Exploration, 2021, 45(2): 480-489.

    Google Scholar

    [9] 杨剑, 李华, 王桥, 等. 综合地球物理勘探快速获取城市待建区浅部三维地质特征:以成都市天府新区独角兽岛为例[J]. 地球物理学进展, 2021, 36(4):1751-1759.

    Google Scholar

    [10] Yang J, Li H, Wang Q, et al. Rapid acquisition of shallow 3D geological features of undeveloped area in city by comprehensive Geophysical exploration:a case study on the Unicorn Island in Tianfu New District,Chengdu City[J]. Progress in Geophysics, 2021, 36(4): 1751-1759.

    Google Scholar

    [11] 孟庆旺. 综合物探方法在嘉祥县青山省级地质公园溶洞勘察中的应用效果[J]. 物探与化探, 2020, 44(6):1464-1469.

    Google Scholar

    [12] Meng Q W. The application effect of comprehensive geophysical method in karst cave investigation of Qingshan Provincial Geopark in Jiaxiang County[J]. Geophysical and Geochemical Exploration, 2020, 44(6): 1464-1469.

    Google Scholar

    [13] 杨天春, 王丹齐, 张叶鹏, 等. 生产矿山岩溶灾害勘查中的综合物探应用研究[J]. 地球物理学进展, 2021, 36(3):1145-1153.

    Google Scholar

    [14] Yang T C, Wang D Q, Zhang Y P, et al. Application research of comprehensive geophysical method to karst investigation in a productive mine[J]. Progress in Geophysics, 2021, 36(3): 1145-1153.

    Google Scholar

    [15] 叶莉, 李非, 黄小年. 综合物探技术在东北公路工程多年冻土勘察中的应用与研究[J]. 灾害学, 2018, 33(S1):25-29.

    Google Scholar

    [16] Ye L, Li F, Huang X N. Application andr esearch of comprehensive geophysical prospecting technology in permafrost exploration of northeast highway project[J]. Journal of Catastrophology, 2018, 33(S1): 25-29.

    Google Scholar

    [17] 黄毓铭, 张晓峰, 谢尚平, 等. 综合物探方法在南宁地铁溶洞探测中的应用[J]. 地球物理学进展, 2017, 32(3):1352-1359.

    Google Scholar

    [18] Huang Y M, Zhang X F, Xie S P, et al. Application of integrated geophysical method to Karst cave exploration of metro engineering in Nanning[J]. Progress in Geophysics, 2017, 32(3): 1352-1359.

    Google Scholar

    [19] 高建华, 蔡耀军, 魏岩峻, 等. 综合物探在南水北调中线工程岩溶探测中的应用[J]. 工程地球物理学报, 2014, 11(4):533-536.

    Google Scholar

    [20] Gao J H, Cai Y J, Wei Y J, et al. The application of comprehensive geophysical prospecting to karst detection in South-to-North water diversion middle rroute projiect[J]. Chinese Journal of Engineering Geophysics, 2014, 11(4): 533-536.

    Google Scholar

    [21] 李丹, 肖宽怀. 高密度电法在铁峰山2号隧道工程探测中的应用[J]. 工程地球物理学报, 2006, 3(3):197-200.

    Google Scholar

    [22] Li D, Xiao K H. High density electrical resistance exploration in the No.2 tiefengshan tunnel[J]. Chinese Journal of Engineering Geophysics, 2006, 3(3): 197-200.

    Google Scholar

    [23] 孟凡松, 张刚, 陈梦君, 等. 高密度电阻率法二维勘探数据的三维反演及其在岩溶探测中的应用[J]. 物探与化探, 2019, 43(3):672-678.

    Google Scholar

    [24] Meng F S, Zhang G, Chen M J, et al. 3D inversion of high density resistivity method based on 2D high density electrical prospecting data and its engineering application[J]. Geophysical and Geochemical Exploration, 2019, 43(3): 672-678.

    Google Scholar

    [25] 王喜迁, 孙明国, 张皓, 等. 高密度电法在岩溶探测中的应用[J]. 煤田地质与勘探, 2011, 39(5):72-75.

    Google Scholar

    [26] Wang X Q, Sun M G, Zhang H, et al. Application of high-density electrical technique in karst detection[J]. Coal Geology & Exploration, 2011, 39(5): 72-75.

    Google Scholar

    [27] 马吉静. 高密度电阻率法的异常识别和推断——以溶洞探测和寻找地下水为例[J]. 地球物理学进展, 2019, 34(4):1489-1498.

    Google Scholar

    [28] Ma J J. Anomaly identification and inference of high density resistivity method:take karst cave exploration and groundwater exploration as an example[J]. Progress in Geophysics, 2019, 34(4): 1489-1498.

    Google Scholar

    [29] 尚彦军, 金维浚, 肖刚, 等. AMT 和高密度电法结合探测稻城LHAASO 项目区隐伏断层和基岩埋深[J]. 地球物理学进展, 2021, 36(1):250-257.

    Google Scholar

    [30] Shang Y J, Jin W J, Xiao G, et al. Combination of AMT and high-density electrical method to detect buried fault and bedrock depth in the LHAASO field of Daocheng,Sichuan Province[J]. Progress in Geophysics, 2021, 36(1): 250-257.

    Google Scholar

    [31] 陈乐寿, 王光锷. 大地电磁测深法[M]. 北京: 地质出版社, 1990.

    Google Scholar

    [32] Chen L S, Wang G E. Magnetotelluric Sounding Method[M]. Beijing: Geological Publishing House, 1990.

    Google Scholar

    [33] 张启生. 音频大地电磁法原理及数据处理[J]. 内蒙古石油化工, 2010(19):26-28.

    Google Scholar

    [34] Zhang Q S. AMT principles and data processing[J]. Inner Mongolia Petrochemical Industry, 2010 (19): 26-28.

    Google Scholar

    [35] 李富, 周洪福, 唐文清, 等. 物化探方法在隐伏活动断裂探测中综合研究——以安宁河秧财沟断裂为例[J]. 地球物理学进展, 2019, 34(3):1199-1205.

    Google Scholar

    [36] Li F, Zhou H F, Tang W Q, et al. Comprehensive study of geophysical and geochemical methods in detecting buried active faults: taking the Yangcaigou fault in Anning River as an example[J]. Progress in Geophysics, 2019, 34(3): 1199-1205.

    Google Scholar

    [37] 甘伏平, 吕勇, 喻立平, 等. 氡气测量与CSAMT联合探测地下地质构造——以滇西潞西地区帕连,法帕剖面探测为例[J]. 地质通报, 2012, 31(2):389-395.

    Google Scholar

    [38] Gan F P, Lyu Y, Yu L P, et al. The utilization of combined radon and CSAMT methods to detect underground geological structures: a case study of detection in Palian and Fapa profiles, Luxi area, western Yunnan Province[J]. Geological Bulletin of China, 2012, 31(2): 389-395.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(543) PDF downloads(126) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint