China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2022 Vol. 46, No. 5
Article Contents

SUN Bo-Xuan, HOU Zhen-Long, Zhou Wen-Yue, GONG En-Pu, Zheng Yu-Jun, CHENG Hao. 2022. Joint Euler deconvolution of multi-component gravity gradient data and software design. Geophysical and Geochemical Exploration, 46(5): 1241-1250. doi: 10.11720/wtyht.2022.1500
Citation: SUN Bo-Xuan, HOU Zhen-Long, Zhou Wen-Yue, GONG En-Pu, Zheng Yu-Jun, CHENG Hao. 2022. Joint Euler deconvolution of multi-component gravity gradient data and software design. Geophysical and Geochemical Exploration, 46(5): 1241-1250. doi: 10.11720/wtyht.2022.1500

Joint Euler deconvolution of multi-component gravity gradient data and software design

  • Compared with Euler deconvolution, joint Euler deconvolution of multi-component gravity gradient data features higher calculation accuracy and inversion resolution. To eliminate the divergent solutions of calculation, different screening methods must be used in the application of joint Euler deconvolution of multi-component gravity gradient data, making the calculation process cumbersome. It is evident that effective screening methods and developing a piece of easy-to-use and visual software can improve the accuracy, convenience, and effects of the joint Euler deconvolution of multi-component gravity gradient data. Therefore, this study proposed the joint Euler deconvolution of gravity gradient data with the constraint of edge detection based on correlation coefficients. Moreover, on the design principles of the intuitive interfaces, practical functions, and concise codes, this study designed a software system with functions such as data/file management, two-dimensional/three-dimensional visualization, edge detection, and joint Euler deconvolution of multi-component gravity gradient data using Python language and its function library to meet the requirements of algorithm flow and functions. The accuracy of calculations and the practicability of the software have been verified through a theoretical model and tests of measured data, proving that the software designed in this study can improve the application effects.
  • 加载中
  • [1] Hou Z L, Wei X H, Huang D N. Fast density inversion solution for full tensor gravity gradiometry data[J]. Pure and Applied Geophysics, 2016, 173(2): 509-523.

    Google Scholar

    [2] 汤井田, 史庆斌, 胡双贵, 等. 基于重力梯度张量曲率的边界识别[J]. 地球物理学报 2019, 62(5):1872-1884.

    Google Scholar

    [3] Tang J T, Shi Q B, Hu S G, et al. Edge detection based on curvature of gravity gradient tensors[J]. Chinese Journal of Geophysics, 2019, 62(5): 1872-1884.

    Google Scholar

    [4] 张琦. 重力梯度数据的边界识别与深度成像方法研究[D]. 长春: 吉林大学, 2019.

    Google Scholar

    [5] Zhang Q. The study on edge detection and depth imaging method for gravity gradient data[D]. Changchun: Jilin University, 2019.

    Google Scholar

    [6] 郑玉君, 侯振隆, 巩恩普, 等. 基于深度加权的多分量重力梯度数据联合相关成像方法[J]. 吉林大学学报:地球科学版, 2020, 50(4):1197-1210.

    Google Scholar

    [7] Zheng Y J, Hou Z L, Gong E P, et al. Correlation imaging method with joint multiple gravity gradiometry data based on depth weighting[J]. Journal of Jilin University:Earth Science Edition, 2020, 50(4): 1197-1210.

    Google Scholar

    [8] Thompson D T. EULDPH: A new technique for making computer-assisted depth estimates from magnetic data[J]. Geophysics, 1982, 47(1): 31-37.

    Google Scholar

    [9] Cooper G R J. Euler Deconvolution with improved accuracy and multiple different structural indices[J]. Journal of China University of Geosciences, 2008, 19(1):72-76.

    Google Scholar

    [10] Petar S, Alan R. Euler deconvolution of gravity anomalies from thick contact/fault structures with extended negative structural index[J]. Society of Exploration Geophysicists, 2010, 75(6): 151-158.

    Google Scholar

    [11] Wang J, Meng X H, Li F. New improvements for lineaments study of gravity data with improved Euler inversion and phase congruency of the field data[J]. Journal of Applied Geophysics, 2017, 136: 326-334.

    Google Scholar

    [12] Eric N N, Koumetio F, Victor J, et al. Gravity study of the Douala sub-basin (Cameroon) using Euler 3D deconvolution, source edge detection (SED) and special function analysis[J]. SN Applied Sciences, 2019, 1(10): 1-17.

    Google Scholar

    [13] Zhang C, Mushayandebvu M F, Reid A B, et al. Euler deconvolution of gravity tensor gradient data[J]. Geophysics, 2000, 65(2): 512-520.

    Google Scholar

    [14] Majid B, Laust B P. Eigenvector analysis of gravity gradient tensor to locate geologic bodies[J]. Geophysics, 2010, 75(6): 137-149.

    Google Scholar

    [15] 周文月, 陈昌昕, 侯振隆, 等. 不同高度数据联合欧拉反褶积法研究[J]. 地球物理学报, 2018, 61(8):3400-3409.

    Google Scholar

    [16] Zhou W Y, Chen C X, Hou Z L, et al. The study on the joint Euler deconvolution method of different heights[J]. Chinese Journal of Geophysics, 2018, 61(8): 3400-3409.

    Google Scholar

    [17] 侯振隆, 王恩德, 周文纳, 等. 重力梯度欧拉反褶积及其在文顿盐丘的应用[J]. 石油地球物理勘探, 2019, 54(2):472-479.

    Google Scholar

    [18] Hou Z L, Wang E D, Zhou W N, et al. Euler deconvolution of gravity gradiometry data and the application in Vinton Dome[J]. Oil Geophysical Prospecting, 2019, 54(2): 472-479.

    Google Scholar

    [19] 马国庆, 吴琪, 李丽丽. 重力梯度张量联合欧拉反褶积法研究[J]. 地球物理学进展, 2020, 35(6):2188-2193.

    Google Scholar

    [20] Ma G Q, Wu Q, Li L L. Study on the joint Euler deconvolution method of gravity gradient tensor data[J]. Progress in Geophysics, 2020, 35(6): 2188-2193.

    Google Scholar

    [21] 王林飞, 薛典军, 何辉, 等. 插件技术在GeoProbe地球物理软件平台中的应用[J]. 物探与化探, 2013, 37(3):547-551.

    Google Scholar

    [22] Wang L F, Xue D J, He H, et al. The application of the plug-in technology to geophysical software platform (GeoProbe)[J]. Geophysical and Geochemical Exploration, 2013, 37(3): 547-551.

    Google Scholar

    [23] Norman S N, James C. Seismic image undersampling-resolution, visibility, and display[J]. Society of Exploration Geophysicists, 2017, 37(1): 37-45.

    Google Scholar

    [24] 詹毅, 徐少波, 雷娜, 等. 国产大型地震数据处理解释一体化软件GeoEast推广应用实践[J]. 石油科技论坛, 2020, 39(1):67-71.

    Google Scholar

    [25] Zhan Y, Xu S B, Lei N, et al. Promote application of GeoEast-large-scale domestic seismic data processing and interpretation integrated software[J]. Oil Forum, 2020, 39(1): 67-71.

    Google Scholar

    [26] 郑元满, 姚长利, 李泽林, 等. 重磁处理解释系统软件设计与关键实现技术[J]. 地球物理学报, 2019, 62(10):3744-3759.

    Google Scholar

    [27] Zheng Y M, Yao C L, Li Z L, et al. Software design and key implementation techniques of gravity and magnetic processing and interpretation system[J]. Chinese Journal of Geophysics, 2019, 62(10): 3744-3759.

    Google Scholar

    [28] 陈靖, 王万银, 郭文波, 等. 重磁软件架构设计及实现方案研究[J]. 物探与化探, 2020, 44(4):905-913.

    Google Scholar

    [29] Chen J, Wang W Y, Guo W B, et al. A study of the design and implementation of gravity and magnetic software[J]. Geophysical and Geochemical Exploration, 2020, 44(4): 905-913.

    Google Scholar

    [30] 王浩然. 基于并行计算与深度学习算法的大规模重磁数据反演研究[D]. 长春: 吉林大学, 2020.

    Google Scholar

    [31] Wang H R. The study on the gravity and magnetic inversion based on parallel computing and deep learning algorithm[D]. Changchun: Jilin University, 2020.

    Google Scholar

    [32] 张浩平, 付媛媛. VC++调用Matlab实现三维欧拉反褶积运算[J]. 物探化探计算技术, 2006, 28(2):178-181,88.

    Google Scholar

    [33] Zhang H P, Fu Y Y. Implementation of 3-D Euler disconvolution by VC++ Calling Matlab[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2006, 28(2): 178-181,88.

    Google Scholar

    [34] 管志宁. 地磁场与磁力勘探[M]. 北京: 地质出版社, 2005.

    Google Scholar

    [35] Guan Z N. Geomagnetic field and magnetic exploration[M]. Beijing: Geological Publishing House, 2005.

    Google Scholar

    [36] Miller H G, Singh V. Potential field Tilt-A new concept for location of potential field sources[J]. Journal of Applied Geophysics, 1994, 32: 213-217.

    Google Scholar

    [37] Guo C W, Xing Z, Wang L F, et al. Three-directional analytic signal analysis and interpretation of magnetic gradient tensor[J]. Applied Geophysics, 2020, 17(2): 285-296.

    Google Scholar

    [38] 王万银. 位场总水平导数极值位置空间变化规律研究[J]. 地球物理学报, 2010, 53(9):2257-2270.

    Google Scholar

    [39] Wang W Y. Spatial variation law of the extreme value positions of total horizontal derivative for potential field data[J]. Chinese Journal of Geophysics, 2010, 53(9): 2257-2270.

    Google Scholar

    [40] Wang W Y, Pan Y, Qiu Z Y. A new edge recognition technology based on the normalized vertical derivative of the total horizontal derivative for potential field data[J]. Applied Geophysics, 2009, 6(3): 226-233.

    Google Scholar

    [41] 袁园, 黄大年, 余青露. 利用加强水平方向总水平导数对位场全张量数据进行边界识别[J]. 地球物理学报, 2015, 58(7):2556-2565.

    Google Scholar

    [42] Yuan Y, Huang D N, Yu Q L. Using enhanced directional total horizontal derivatives to detect the edge of potential-field full tensor data[J]. Chinese Journal of Geophysics, 2015, 58(7): 2556-2565.

    Google Scholar

    [43] 侯振隆, 王恩德, 唐水亮, 等. 方向总水平导数法的改进和边界识别中的应用[J]. 东北大学学报:自然科学版, 2019, 40(1):104-108.

    Google Scholar

    [44] Hou Z L, Wang E D, Tang S L, et al. Improvements of the directional total horizontal derivatives and their application in edge detection[J]. Journal of Northeastern University:Natural Science, 2019, 40(1): 104-108.

    Google Scholar

    [45] 秦朋波. 重力和重力梯度数据联合反演方法研究[D]. 长春: 吉林大学, 2016.

    Google Scholar

    [46] Qin P B. A study on integrated gravity and gravity gradient data in inversion[D]. Changchun: Jilin University, 2016.

    Google Scholar

    [47] 高秀鹤. 重磁及张量梯度数据三维反演方法研究与应用[D]. 长春: 吉林大学, 2019.

    Google Scholar

    [48] Gao X H. The study and application of 3D inversion methods gravity & magnetic their gradient tensor data[D]. Changchun: Jilin University, 2019.

    Google Scholar

    [49] 周文月. 重磁张量场源空间分布特征反演技术研究[D]. 长春: 吉林大学, 2019.

    Google Scholar

    [50] Zhou W Y. Research on inversion technique of distribution characteristics of gravity and magnetic tensor field sources[D]. Changchun: Jilin University, 2019.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(646) PDF downloads(61) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint