[1] |
Hou Z L, Wei X H, Huang D N. Fast density inversion solution for full tensor gravity gradiometry data[J]. Pure and Applied Geophysics, 2016, 173(2): 509-523.
Google Scholar
|
[2] |
汤井田, 史庆斌, 胡双贵, 等. 基于重力梯度张量曲率的边界识别[J]. 地球物理学报 2019, 62(5):1872-1884.
Google Scholar
|
[3] |
Tang J T, Shi Q B, Hu S G, et al. Edge detection based on curvature of gravity gradient tensors[J]. Chinese Journal of Geophysics, 2019, 62(5): 1872-1884.
Google Scholar
|
[4] |
张琦. 重力梯度数据的边界识别与深度成像方法研究[D]. 长春: 吉林大学, 2019.
Google Scholar
|
[5] |
Zhang Q. The study on edge detection and depth imaging method for gravity gradient data[D]. Changchun: Jilin University, 2019.
Google Scholar
|
[6] |
郑玉君, 侯振隆, 巩恩普, 等. 基于深度加权的多分量重力梯度数据联合相关成像方法[J]. 吉林大学学报:地球科学版, 2020, 50(4):1197-1210.
Google Scholar
|
[7] |
Zheng Y J, Hou Z L, Gong E P, et al. Correlation imaging method with joint multiple gravity gradiometry data based on depth weighting[J]. Journal of Jilin University:Earth Science Edition, 2020, 50(4): 1197-1210.
Google Scholar
|
[8] |
Thompson D T. EULDPH: A new technique for making computer-assisted depth estimates from magnetic data[J]. Geophysics, 1982, 47(1): 31-37.
Google Scholar
|
[9] |
Cooper G R J. Euler Deconvolution with improved accuracy and multiple different structural indices[J]. Journal of China University of Geosciences, 2008, 19(1):72-76.
Google Scholar
|
[10] |
Petar S, Alan R. Euler deconvolution of gravity anomalies from thick contact/fault structures with extended negative structural index[J]. Society of Exploration Geophysicists, 2010, 75(6): 151-158.
Google Scholar
|
[11] |
Wang J, Meng X H, Li F. New improvements for lineaments study of gravity data with improved Euler inversion and phase congruency of the field data[J]. Journal of Applied Geophysics, 2017, 136: 326-334.
Google Scholar
|
[12] |
Eric N N, Koumetio F, Victor J, et al. Gravity study of the Douala sub-basin (Cameroon) using Euler 3D deconvolution, source edge detection (SED) and special function analysis[J]. SN Applied Sciences, 2019, 1(10): 1-17.
Google Scholar
|
[13] |
Zhang C, Mushayandebvu M F, Reid A B, et al. Euler deconvolution of gravity tensor gradient data[J]. Geophysics, 2000, 65(2): 512-520.
Google Scholar
|
[14] |
Majid B, Laust B P. Eigenvector analysis of gravity gradient tensor to locate geologic bodies[J]. Geophysics, 2010, 75(6): 137-149.
Google Scholar
|
[15] |
周文月, 陈昌昕, 侯振隆, 等. 不同高度数据联合欧拉反褶积法研究[J]. 地球物理学报, 2018, 61(8):3400-3409.
Google Scholar
|
[16] |
Zhou W Y, Chen C X, Hou Z L, et al. The study on the joint Euler deconvolution method of different heights[J]. Chinese Journal of Geophysics, 2018, 61(8): 3400-3409.
Google Scholar
|
[17] |
侯振隆, 王恩德, 周文纳, 等. 重力梯度欧拉反褶积及其在文顿盐丘的应用[J]. 石油地球物理勘探, 2019, 54(2):472-479.
Google Scholar
|
[18] |
Hou Z L, Wang E D, Zhou W N, et al. Euler deconvolution of gravity gradiometry data and the application in Vinton Dome[J]. Oil Geophysical Prospecting, 2019, 54(2): 472-479.
Google Scholar
|
[19] |
马国庆, 吴琪, 李丽丽. 重力梯度张量联合欧拉反褶积法研究[J]. 地球物理学进展, 2020, 35(6):2188-2193.
Google Scholar
|
[20] |
Ma G Q, Wu Q, Li L L. Study on the joint Euler deconvolution method of gravity gradient tensor data[J]. Progress in Geophysics, 2020, 35(6): 2188-2193.
Google Scholar
|
[21] |
王林飞, 薛典军, 何辉, 等. 插件技术在GeoProbe地球物理软件平台中的应用[J]. 物探与化探, 2013, 37(3):547-551.
Google Scholar
|
[22] |
Wang L F, Xue D J, He H, et al. The application of the plug-in technology to geophysical software platform (GeoProbe)[J]. Geophysical and Geochemical Exploration, 2013, 37(3): 547-551.
Google Scholar
|
[23] |
Norman S N, James C. Seismic image undersampling-resolution, visibility, and display[J]. Society of Exploration Geophysicists, 2017, 37(1): 37-45.
Google Scholar
|
[24] |
詹毅, 徐少波, 雷娜, 等. 国产大型地震数据处理解释一体化软件GeoEast推广应用实践[J]. 石油科技论坛, 2020, 39(1):67-71.
Google Scholar
|
[25] |
Zhan Y, Xu S B, Lei N, et al. Promote application of GeoEast-large-scale domestic seismic data processing and interpretation integrated software[J]. Oil Forum, 2020, 39(1): 67-71.
Google Scholar
|
[26] |
郑元满, 姚长利, 李泽林, 等. 重磁处理解释系统软件设计与关键实现技术[J]. 地球物理学报, 2019, 62(10):3744-3759.
Google Scholar
|
[27] |
Zheng Y M, Yao C L, Li Z L, et al. Software design and key implementation techniques of gravity and magnetic processing and interpretation system[J]. Chinese Journal of Geophysics, 2019, 62(10): 3744-3759.
Google Scholar
|
[28] |
陈靖, 王万银, 郭文波, 等. 重磁软件架构设计及实现方案研究[J]. 物探与化探, 2020, 44(4):905-913.
Google Scholar
|
[29] |
Chen J, Wang W Y, Guo W B, et al. A study of the design and implementation of gravity and magnetic software[J]. Geophysical and Geochemical Exploration, 2020, 44(4): 905-913.
Google Scholar
|
[30] |
王浩然. 基于并行计算与深度学习算法的大规模重磁数据反演研究[D]. 长春: 吉林大学, 2020.
Google Scholar
|
[31] |
Wang H R. The study on the gravity and magnetic inversion based on parallel computing and deep learning algorithm[D]. Changchun: Jilin University, 2020.
Google Scholar
|
[32] |
张浩平, 付媛媛. VC++调用Matlab实现三维欧拉反褶积运算[J]. 物探化探计算技术, 2006, 28(2):178-181,88.
Google Scholar
|
[33] |
Zhang H P, Fu Y Y. Implementation of 3-D Euler disconvolution by VC++ Calling Matlab[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2006, 28(2): 178-181,88.
Google Scholar
|
[34] |
管志宁. 地磁场与磁力勘探[M]. 北京: 地质出版社, 2005.
Google Scholar
|
[35] |
Guan Z N. Geomagnetic field and magnetic exploration[M]. Beijing: Geological Publishing House, 2005.
Google Scholar
|
[36] |
Miller H G, Singh V. Potential field Tilt-A new concept for location of potential field sources[J]. Journal of Applied Geophysics, 1994, 32: 213-217.
Google Scholar
|
[37] |
Guo C W, Xing Z, Wang L F, et al. Three-directional analytic signal analysis and interpretation of magnetic gradient tensor[J]. Applied Geophysics, 2020, 17(2): 285-296.
Google Scholar
|
[38] |
王万银. 位场总水平导数极值位置空间变化规律研究[J]. 地球物理学报, 2010, 53(9):2257-2270.
Google Scholar
|
[39] |
Wang W Y. Spatial variation law of the extreme value positions of total horizontal derivative for potential field data[J]. Chinese Journal of Geophysics, 2010, 53(9): 2257-2270.
Google Scholar
|
[40] |
Wang W Y, Pan Y, Qiu Z Y. A new edge recognition technology based on the normalized vertical derivative of the total horizontal derivative for potential field data[J]. Applied Geophysics, 2009, 6(3): 226-233.
Google Scholar
|
[41] |
袁园, 黄大年, 余青露. 利用加强水平方向总水平导数对位场全张量数据进行边界识别[J]. 地球物理学报, 2015, 58(7):2556-2565.
Google Scholar
|
[42] |
Yuan Y, Huang D N, Yu Q L. Using enhanced directional total horizontal derivatives to detect the edge of potential-field full tensor data[J]. Chinese Journal of Geophysics, 2015, 58(7): 2556-2565.
Google Scholar
|
[43] |
侯振隆, 王恩德, 唐水亮, 等. 方向总水平导数法的改进和边界识别中的应用[J]. 东北大学学报:自然科学版, 2019, 40(1):104-108.
Google Scholar
|
[44] |
Hou Z L, Wang E D, Tang S L, et al. Improvements of the directional total horizontal derivatives and their application in edge detection[J]. Journal of Northeastern University:Natural Science, 2019, 40(1): 104-108.
Google Scholar
|
[45] |
秦朋波. 重力和重力梯度数据联合反演方法研究[D]. 长春: 吉林大学, 2016.
Google Scholar
|
[46] |
Qin P B. A study on integrated gravity and gravity gradient data in inversion[D]. Changchun: Jilin University, 2016.
Google Scholar
|
[47] |
高秀鹤. 重磁及张量梯度数据三维反演方法研究与应用[D]. 长春: 吉林大学, 2019.
Google Scholar
|
[48] |
Gao X H. The study and application of 3D inversion methods gravity & magnetic their gradient tensor data[D]. Changchun: Jilin University, 2019.
Google Scholar
|
[49] |
周文月. 重磁张量场源空间分布特征反演技术研究[D]. 长春: 吉林大学, 2019.
Google Scholar
|
[50] |
Zhou W Y. Research on inversion technique of distribution characteristics of gravity and magnetic tensor field sources[D]. Changchun: Jilin University, 2019.
Google Scholar
|