China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2022 Vol. 46, No. 4
Article Contents

YUE Hang-Yu, ZHANG Ming-Dong, ZHANG Bao-Wei, WANG Guang-Ke, WANG Xiao-Jiang, LIU Dong-Ming. 2022. An experimental study on the high-resolution single-channel seismic exploration technology for inland shallow waters. Geophysical and Geochemical Exploration, 46(4): 914-924. doi: 10.11720/wtyht.2022.1479
Citation: YUE Hang-Yu, ZHANG Ming-Dong, ZHANG Bao-Wei, WANG Guang-Ke, WANG Xiao-Jiang, LIU Dong-Ming. 2022. An experimental study on the high-resolution single-channel seismic exploration technology for inland shallow waters. Geophysical and Geochemical Exploration, 46(4): 914-924. doi: 10.11720/wtyht.2022.1479

An experimental study on the high-resolution single-channel seismic exploration technology for inland shallow waters

  • With the advantages of flexible configuration,convenience,high efficiency,and resolution,the single-channel seismic detection technology has been widely used in marine geological surveys and offshore engineering geophysical prospecting.However,there are few cases of the application of this technology in inland rivers and lakes.Therefore,an experimental study on the high-resolution single-channel seismic detection technology targeting the inland shallow waters of Baiyangdian Lake,Xiongan New Area,Hebei Province was conducted.The application effects using key acquisition parameters,including excitation energy,excitation interval,sailing speed,and the number of receiving units,were compared to determine the optimal parameter combination.A set of single-channel seismic data processing processes and methods for inland shallow waters were developed to gradually attenuate all kinds of noises and improve the signal-to-noise ratio and resolution to the greatest extent.The experimental results show that the single-channel seismic detection technology for inland shallow waters can finely divide the shallow stratigraphic structure in the waters.Moreover,the division effects agree well with drilling data.Therefore,this technology can effectively support the investigations of environment,geology,and geologic hazards in inland rivers and lakes.
  • 加载中
  • [1] 杨慧良, 陆凯, 褚宏宪, 等. 海洋地质地球物理调查技术方法发展趋势探讨[J]. 海洋地质前沿, 2019, 35(9):1-5.

    Google Scholar

    [2] Yang H L, Lu K, Chu H X, et al. Future development trend of marine geological and geophysical survey techniques and methods[J]. Marine Geology Frontiers, 2019, 35(9):1-5.

    Google Scholar

    [3] Zhao W N, Zhang X H, Wang Z B, et al. Quaternary high-resolution seismic sequence based on instantaneous phase of single-channel seismic data in the South Yellow Sea,China[J]. Quaternary International, 2018, 468(A):4-13.

    Google Scholar

    [4] 李军峰, 肖都, 孔广胜, 等. 单道海上反射地震在海上物探工程中的应用[J]. 物探与化探, 2004, 28(4):365-368.

    Google Scholar

    [5] Li J F, Xiao D, Kong G S, et al. The application of single-channel marine reflection seismic survey to marine geophysical exploration[J]. Geophysical and Geochemical Exploration, 2004, 28(4):365-368.

    Google Scholar

    [6] 李军峰, 李文杰, 孟庆敏, 等. 高分辨率单道海上地震在香港海域沉积结构勘查中的应用[J]. 物探与化探, 2007, 31(1):90-94.

    Google Scholar

    [7] Li J F, Li W J, Meng Q M, et al. The application of high resolution single channel marine seismic to the exploration offshore Quaternary superficial deposits in Hong Kong waters[J]. Geophysical and Geochemical Exploration, 2007, 31(1):90-94.

    Google Scholar

    [8] 褚宏宪, 杨源, 张晓波, 等. 高分辨率单道地震调查数据采集技术方法[J]. 海洋地质前沿, 2012, 28(12):70-74.

    Google Scholar

    [9] Chu H X, Yang Y, Zhang X B, et al. Data acquisition technique for high resolution single-channel seismic survey[J]. Marine Geology Frontiers, 2012, 28(12):70-74.

    Google Scholar

    [10] 李丽青, 唐卫, 陈泓君, 等. 高分辨率单道地震剖面上定标号的计算方法[J]. 地球物理学进展, 2012, 27(5):1871-1880.

    Google Scholar

    [11] Li L Q, Tang W, Chen H J, et al. Computing method of marked line number for high resolution single-channel seismic section[J]. Progress in Geophysics, 2012, 27(5):1871-1880.

    Google Scholar

    [12] 陈珊珊, 吴志强, 郭兴伟, 等. 大陆架科学钻探南黄海陆架区首钻300m选位研究[J]. 海洋地质与第四纪地质, 2014, 34(3):31-38.

    Google Scholar

    [13] Chen S S, Wu Z Q, Guo X W, et al. Site survey for the first 300 m coring hole of the China continental scientific drilling program in the Southern Yellow Sea (SYS)[J]. Marine Geology and Quaternary Geology, 2014, 34(3):31-38.

    Google Scholar

    [14] 韦成龙, 张珂, 余章馨, 等. 珠江口外海域与珠江三角洲晚更新世以来的地层层序对比[J]. 沉积学报, 2015, 33(4):713-723.

    Google Scholar

    [15] Wei C L, Zhang K, Yu Z X, et al. Correlation of stratigraphic sequences between the Pearl River Delta and its offshore continental shelf since the Late Pleistocene[J]. Acta Sedimentologica Sinica, 2015, 33(4):713-723.

    Google Scholar

    [16] 赵维娜, 张训华, 吴志强, 等. 三瞬属性在南黄海第四纪地震地层分析中的应用[J]. 海洋学报, 2016, 38(7):117-125.

    Google Scholar

    [17] Zhao W N, Zhang X H, Wu Z Q, et al. Application of three instantaneous attributes in the analysis of Quaternary seismic strata in the southern Yellow Sea[J]. Haiyang Xuebao, 2016, 38(7):117-125.

    Google Scholar

    [18] 聂鑫, 罗伟东, 周娇. 南海东北部澎湖峡谷群沉积特征[J]. 海洋地质前沿, 2017, 33(8):18-23.

    Google Scholar

    [19] Nie X, Luo W D, Zhou J. Depositional characteristics of the Penghu Submarine Canyon in the northeastern South China Sea[J]. Marine Geology Frontiers, 2017, 33(8):18-23.

    Google Scholar

    [20] 冯英辞, 詹文欢, 姚衍桃, 等. 西沙群岛礁区的地质构造及其活动性分析[J]. 热带海洋学报, 2015, 34(3):48-53.

    Google Scholar

    [21] Feng Y C, Zhan W H, Yao Y T, et al. Analysis of tectonic movement and activity in the organic reef region around the Xisha Islands[J]. Journal of Tropical Oceanography, 2015, 34(3):48-53.

    Google Scholar

    [22] 陈江欣, 侯方辉, 李日辉, 等. 渤海海域中西部新构造运动特征[J]. 海洋地质与第四纪地质, 2018, 38(4):83-91.

    Google Scholar

    [23] Chen J X, Hou F H, Li R H, et al. Neotectonics in the western and central Bohai Sea[J]. Marine Geology and Quaternary Geology, 2018, 38(4):83-91.

    Google Scholar

    [24] 马胜中. 浅层地球物理方法在广西钦州湾-北海海域断层探测的应用[J]. 海洋技术, 2010, 29(6):20-24.

    Google Scholar

    [25] Ma S Z. Application of shallow geophysical method to detect active fault in nearshore of Qingzhou Bay-Beihai[J]. Ocean Technology, 2010, 29(6):20-24.

    Google Scholar

    [26] 陆凯, 侯方辉, 李日辉, 等. 利用单道地震研究黄、渤海海域的活动断裂[J]. 海洋地质前沿, 2012, 28(8):27-30.

    Google Scholar

    [27] Lu K, Hou F H, Li R H, et al. Using single-channel seismic for active faults investigation in Yellow Sea and Bohai Sea[J]. Marine Geology Frontiers, 2012, 28(8):27-30.

    Google Scholar

    [28] 吴德城, 侯方辉, 祁江豪, 等. 中国近海新构造活动断裂调查与地震勘探方法[J]. 海洋地质与第四纪地质, 2020, 40(6):121-132.

    Google Scholar

    [29] Wu D C, Hou F H, Qi J H, et al. Seismic survey and exploration methods for Neotectonic active faults in the area off China continent[J]. Marine Geology and Quaternary Geology, 2020, 40(6):121-132.

    Google Scholar

    [30] 栾锡武, 秦蕴珊. 冲绳海槽宫古段西部槽底海底气泉的发现[J]. 科学通报, 2005, 50(8):802-810.

    Google Scholar

    [31] Luan X W, Qin Y S. Discovery of submarine gas springs in the western miyako section of Okinawa Trough[J]. Chinese Science Bulletin, 2005, 50(8):802-810.

    Google Scholar

    [32] 周其坤, 孙永福, 宋玉鹏, 等. 渤海湾某海洋平台场址浅层气分布与成因[J]. 地质通报, 2021, 40(2/3):298-304.

    Google Scholar

    [33] Zhou Q K, Sun Y F, Song Y P, et al. Distribution of shallow gas at an offshore platform site in Bohai Bay and its genetic mechanism[J]. Geological Bulletin of China, 2021, 40(2/3):298-304.

    Google Scholar

    [34] 傅人康, 张匡华, 宋家伟. 利用侧扫声呐和单道地震提取海底微地貌的方法[J]. 海洋开发与管理, 2018, 4:109-112.

    Google Scholar

    [35] Fu R K, Zhang K H, Song J W. The method of extracting seabed microtography information from side scan sonar pictures and single-channel seismic profiles[J]. Ocean Development and Management, 2018, 4:109-112.

    Google Scholar

    [36] 孙美静, 罗伟东, 钟和贤, 等. 厦门湾口外近岸陆架区海底沙波发育特征[J]. 海洋地质与第四纪地质, 2021, 41(2):43-52.

    Google Scholar

    [37] Sun M J, Luo W D, Zhong H X, et al. Sand waves in the shelf area off Xiamen Bay[J]. Marine Geology and Quaternary Geology, 2021, 41(2):43-52.

    Google Scholar

    [38] 侯方辉, 王保军, 孙建伟, 等. 渤海海峡跨海通道新构造运动特征及其工程地质意义[J]. 海洋地质前沿, 2016, 32(5):25-30.

    Google Scholar

    [39] Hou F H, Wang B J, Sun J W, et al. Neotectonic movement across the Bohai Strait and its engineering geologic significance[J]. Marine Geology Frontiers, 2016, 32(5):25-30.

    Google Scholar

    [40] 刘保华, 丁继胜, 裴彦良, 等. 海洋地球物理探测技术及其在近海工程中的应用[J]. 海洋科学进展, 2005, 23(3):374-384.

    Google Scholar

    [41] Liu B H, Ding J S, Pei Y L, et al. Marine geophysica survey techniques and their applications to offshore engineering[J]. Advances in Marine Science, 2005, 23(3):374-384.

    Google Scholar

    [42] 刘长春, 李攀峰, 孙军, 等. 渤海海峡地区高分辨率地震层序特征及其古环境演化[J]. 地球物理学进展, 2020, 35(6):2373-2383.

    Google Scholar

    [43] Liu C C, Li P F, Sun J, et al. High-resolution seismic sequence characteristics and its paleoenvironmental evolution in the Bohai Straits[J]. Progress in Geophysics, 2020, 35(6):2373-2383.

    Google Scholar

    [44] 张莉, 李文成, 沙志彬. 琼州海峡跨海工程新Ⅶ线区地质条件及地质灾害因素评价[J]. 海洋地质与第四纪地质, 2005, 25(2):17-23.

    Google Scholar

    [45] Zhang L, Li W C, Sha Z B, et al. Evaluation of geological condition and potential geohazard factors in new line Ⅶ survey area of crossing Qiongzhou Strait engineering[J]. Marine Geology and Quaternary Geology, 2005, 25(2):17-23.

    Google Scholar

    [46] 罗昆, 陈卫, 韩孝辉. 海南岛南部浅海地质灾害调查方法研究[J]. 海洋开发与管理, 2018, 35(3):51-55.

    Google Scholar

    [47] Luo K, Chen W, Han X H, et al. Investigation method of geological disasters in the southern shallow sea of Hainan Island[J]. Ocean Development and Management, 2018, 35(3):51-55.

    Google Scholar

    [48] Fink C R, Spence G D. Hydrate distribution off Vancouver Island from multifrequency single-channel seismic reflection data[J]. Journal of Geophysical Research, 1999, 104(B2):2909-2922.

    Google Scholar

    [49] 李守军, 初凤友, 方银霞, 等. 南海北部陆坡神狐海域浅地层与单道地震剖面联合解释——水合物区沉积地层特征[J]. 热带海洋学报, 2010, 29(4):56-62.

    Google Scholar

    [50] Li S J, Chu F Y, Fang Y X, et al. Associated interpretation of sub-bottom and single-channel seismic profiles from slope of Shenhu Area in the northern South China Sea-characteristics of gas hydrate sediment[J]. Journal of Tropical Oceanography, 2010, 29(4):56-62.

    Google Scholar

    [51] 韩孝辉, 李亮, 刘刚, 等. 海南岛万宁东部近海锆钛砂矿赋存特征[J]. 中国矿业, 2017, 26(S2):186-189.

    Google Scholar

    [52] Han X H, Li L, Liu G, et al. Occurrence characteristics of offshore Zr-Ti placer deposits in eastern Wanning of Hainan Island[J]. China Mining Magazine, 2017, 26(S2):186-189.

    Google Scholar

    [53] 韩孝辉, 薛玉龙, 刘刚. 海上风电场建设的前期地质调查研究方法[J]. 工程勘察, 2018, 3:29-34.

    Google Scholar

    [54] Han X H, Xue Y L, Liu G. Study methods for preliminary geological survey of the construction of offshore wind farms[J]. Geotechnical Investigation and Surveying, 2018, 3:29-34.

    Google Scholar

    [55] 刘玉萍, 李丽青, 赵斌, 等. 海洋低信噪比单道地震资料特点及处理策略[J]. 海洋地质前沿, 2019, 35(7):25-33.

    Google Scholar

    [56] Liu Y P, Li L Q, Zhao B, et al. The characteristics and processing methods of marine single-channel seismic data with low SNR[J]. Marine Geology Frontiers, 2019, 35(7): 25-33.

    Google Scholar

    [57] 李丽青, 徐华宁, 舒虎. 涌浪静校正技术在海洋单道地震资料处理中的应用[J]. 物探与化探, 2007, 31(4):339-343.

    Google Scholar

    [58] Li L Q, Xu H N, Shu H. The application of the wave static correction method to marine single-channel seismic data processing[J]. Geophysical and Geochemical Exploration, 2007, 31(4):339-343.

    Google Scholar

    [59] 李丽青, 陈泓君, 彭学超, 等. 海洋区域地质调查中的高分辨率单道地震资料关键处理技术[J]. 物探与化探, 2011, 35(1):86-92.

    Google Scholar

    [60] Li L Q, Chen H J, Peng X C, et al. The marine processing methods of high-resolution single-channel seismic data in marine regional geological survey[J]. Geophysical and Geochemical Exploration, 2011, 35(1):86-92.

    Google Scholar

    [61] 刘建勋. 提高海上单道反射地震记录信噪比和分辨率的方法技术[J]. 物探化探计算技术, 2007, 29(S):116-120.

    Google Scholar

    [62] Liu J X. The technique of improving single-to-noise ratio and resolution for marine seismic profiling[J]. Computing techniques for Geophysical and Geochemical Exploration, 2007, 29(S):116-120.

    Google Scholar

    [63] 林兆彬, 胡毅, 郑江龙, 等. 小波变换压制噪声在单道地震资料处理中的应用[J]. 应用海洋学学报, 2018, 37(1):113-119.

    Google Scholar

    [64] Lin Z B, Hu Y, Zheng J L, et al. Application of wavelet transform for noise suppression in single-channel seismic data processing[J]. Journal of Applied Oceanography, 2018, 37(1):113-119.

    Google Scholar

    [65] 邢子浩, 陈靓, 杨德鹏, 等. 基于正则化非平稳回归技术的自适应匹配相减在单道地震多次波压制中的应用[J]. 海洋地质前沿, 2021, 37(2):70-76.

    Google Scholar

    [66] Xing Z H, Chen L, Yang D P, et al. Application of adaptive matching subtraction based on regularized nonstationary regression in single channel seismic multiples attenuation[J]. Marine Geology Frontiers, 2021, 37(2):70-76.

    Google Scholar

    [67] 王永, 闵隆瑞, 董进, 等. 河北白洋淀全新统沉积特征与地层划分[J]. 地球学报, 2015, 36(5):575-582.

    Google Scholar

    [68] Wang Y, Min L R, Dong J, et al. Sedimentary characteristics and stratigraphic division of Holocene series in Baiyang Dian,Hebei Provence[J]. Acta Geoscientica Sinica, 2015, 36(5):575-582.

    Google Scholar

    [69] 陈亭亭, 杨振京, 刘荣访, 等. 白洋淀ZK-1钻孔晚更新世以来的粒度特征及其沉积环境分析[J]. 河北地质大学学报, 2017, 40(6):1-7.

    Google Scholar

    [70] Chen T T, Yang Z J, Liu R F, et al. Grain size characteristics and sedimentary environment analysis of Baiyangdian ZK-1 borehole since Late Pleistocene[J]. Journal of Hebei Geo University, 2017, 40(6):1-7.

    Google Scholar

    [71] 易雨君, 林楚翘, 唐彩红. 1960s以来白洋淀水文、环境、生态演变趋势[J]. 湖泊科学, 2020, 32(5):1333-1347.

    Google Scholar

    [72] Yi Y J, Lin C Q, Tang C H. Hydrology,environment and ecological evolution of Lake Baiyangdian since 1960s[J]. Journal of Lake Sciences, 2020, 32(5):1333-1347.

    Google Scholar

    [73] 王雨山, 尹德超, 王旭清, 等. 雄安新区白洋淀湿地地表水和地下水转化关系及其对芦苇分布的影响[J]. 中国地质, 2021, 48(5):1368-1381.

    Google Scholar

    [74] Wang Y S, Yin D C, Wang X Q, et al. Groundwater-surface water interactions in the Baiyangdian wetland, Xiong’an New Area and its impact on reed land[J]. Geology in China, 2021, 48(5):1368-1381.

    Google Scholar

    [75] 马震, 夏雨波, 李海涛, 等. 雄安新区自然资源与环境-生态地质条件分析[J]. 中国地质, 2021, 48(3):677-696.

    Google Scholar

    [76] Ma Z, Xia Y B, Li H T, et al. Analysis of natural resources and environment eco-geological conditions in the Xiong'an New Area[J]. Geology in China, 2021, 48(3):677-696.

    Google Scholar

    [77] 赵志轩. 白洋淀湿地生态水文过程耦合作用机制及综合调控研究[D]. 天津: 天津大学, 2012.

    Google Scholar

    [78] Zhao Z X. Coupling mechanism of eco-hydrological processes and integrated regulation in Baiyangdian Wetland[D]. Tianjin: Tianjin University, 2012.

    Google Scholar

    [79] 张超. 河北平原中南部晚更新世以来古湖泊演化初探[D]. 北京: 中国地质大学(北京), 2020.

    Google Scholar

    [80] Zhang C. Preliminary study on the paleolake evolution of middle and south Hebei Plain since Late Pleistocene[D]. Beijing: China University of Geosciences(Beijing),2020.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1174) PDF downloads(84) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint