| [1] |
刘崇民. 金属矿床原生晕研究进展[J]. 地质学报, 2006, 80(10):1528-1538.
Google Scholar
|
| [2] |
Liu C M. Progress in studies on primary halos of ore deposit[J]. Acta Geologicasinica, 2006, 80(10):1528-1538.
Google Scholar
|
| [3] |
李惠, 禹斌, 李德亮, 等. 化探深部预测新方法综述[J]. 矿产勘查, 2010, 1(2):156-160.
Google Scholar
|
| [4] |
Li H, Yu B, Li D L, et al. Summary of new methods on deep prediction of geochemical exploration[J]. Mineral Exploration, 2010, 1(2):156-160.
Google Scholar
|
| [5] |
邵跃. 热液矿床岩石测量(原生晕法)找矿[M]. 北京: 地质出版社, 1997.
Google Scholar
|
| [6] |
Shao Y. Rock prospecting of hydrothermal deposit(primary halo method)[M]. Beijing: Geological Publishing House, 1997.
Google Scholar
|
| [7] |
欧阳宗圻, 李惠, 刘汉忠. 典型有色金属矿床地球化学异常模式[M]. 北京: 科学出版社, 1990.
Google Scholar
|
| [8] |
Ouyang Z Q, Li H, Liu H Z. Geochemical anomaly models for typical nonferrous metal deposits[M]. Beijing: Science Press, 1990.
Google Scholar
|
| [9] |
史长义, 汪彩芳. 区域次生地球化学负异常模型及其意义[J]. 物探与化探, 1995, 19(2):104-113.
Google Scholar
|
| [10] |
Shi C Y, Wang C F. The regional secondary geochemical negative anomaley model and its significance[J]. Geophysical and Geochemical Exploration, 1995, 19(2):104-113.
Google Scholar
|
| [11] |
朴寿成, 刘树田, 连长云, 等. 地球化学负异常及其找矿意义[J]. 地质与勘探, 1996, 32(2):46-50.
Google Scholar
|
| [12] |
Piao S C, Liu S T, Lian C Y, et al. Geochemical negative anomaly and its prospecting significances[J]. Geology and Prospecting, 1996, 32(2):46-50.
Google Scholar
|
| [13] |
Goldberg I S, Abramson G Y, Los V L. Depletion and enrichment of primary haloes:Their importance in the genesis of and exploration for mineral deposits[J]. Geochemistry:Exploration,Environment,Analysis, 2003, 3(3):281-293.
Google Scholar
|
| [14] |
徐明钻, 朱立新, 马生明, 等. 多重分形模型在区域地球化学异常分析中的应用探讨[J]. 地球学报, 2010, 31(4):611-618.
Google Scholar
|
| [15] |
Xu M Z, Zhu L X, Ma S M, et al. A tentative discussion on the application of multi-fractal models to the analysis of regional geochemical anomalies[J]. Acta Geoscientica Sinica, 2010, 31(4):611-618.
Google Scholar
|
| [16] |
马生明, 朱立新, 刘海良, 等. 甘肃北山辉铜山铜矿地球化学异常结构研究[J]. 地球学报, 2011, 32(4):405-412.
Google Scholar
|
| [17] |
Ma S M, Zhu L X, Liu H L, et al. A study of geochemical anomaly structure of the Huitongshan copper deposit in Beishan Area,Gansu Province[J]. Acta GeoscienticaSinica, 2011, 32(4):405-412.
Google Scholar
|
| [18] |
Goldberg I S, Abramson G Y, Haslam C O, et al. Depletion and enrichment zones in the Bendigo gold field:A possible source of gold and implications for exploration[J]. Economic Geology, 2007, 102(4):745-753.
Google Scholar
|
| [19] |
Beus A A, Grigorian S V. Geochemical exploration methods for mineral deposits[M]. Wilmette: Applied Publishing Ltd, 1977.
Google Scholar
|
| [20] |
Yate Z. Geochemical exploration for deeply hidden ore in southeastern Hubei Province[J]. Journal of Geochemical Exploration, 1989, 33(1):135-144.
Google Scholar
|
| [21] |
Konstantinov M M, Strujkov S F. Application of indicator halos(signs of ore remobilization)in exploration for blind gold and silver deposits[J]. Journal of Geochemical Exploration, 1995, 54(1):1-17.
Google Scholar
|
| [22] |
黄转莹, 路润安. 陕西省凤县铅硐山大型铅锌矿床原生异常分带及分带指数[J]. 地质与勘探, 2003, 39(3):39-44.
Google Scholar
|
| [23] |
Huang Z Y, Lu R A. Zoning characteristics and index of primary geochemical anomalies in Qiandongshan Pb-Zn deposit,Shaanxi Province,China[J]. Geology And Prospecting, 2003, 39(3):39-44.
Google Scholar
|
| [24] |
Liu L M, Peng S L. Prediction of hidden ore bodies by synthesis of geological,geophysical and geochemical information based on dynamic model in Fenghuangshan ore field,Tongling district,China[J]. Journal of Geochemical Exploration, 2004, 81(1):81-98.
Google Scholar
|
| [25] |
Ghavami-Riabi R, Theart H F, De Jager C. Detection of concealed Cu-Zn massive sulfide mineralization below eolian sand and a calcrete cover in the eastern part of the Namaqua Metamorphic Province,South Africa[J]. Journal of Geochemical Exploration, 2008, 97(2/3):83-101.
Google Scholar
|
| [26] |
Wang C M, Carranza E J, Zhang S T, et al. Characterization of primary geochemical haloes for gold exploration at the Huanxiangwa gold deposit,China[J]. Journal of Geochemical Exploration, 2013, 24:40-58.
Google Scholar
|
| [27] |
Zheng C J, Luo X R, Wen M L, et al. Axial primary halo characterization and deep orebody prediction in the Ashele copper-zinc deposit,Xinjiang,NW China[J]. Journal of Geochemical Exploration, 2020, 213:106509.
Google Scholar
|
| [28] |
李惠, 张国义, 王支农, 等. 构造叠加晕法在预测金矿区深部盲矿中的应用效果[J]. 物探与化探, 2003, 27(6):438-440.
Google Scholar
|
| [29] |
Li H, Zhang G Y, Wang Z N, et al. The effect of applying structural superimposed halos to the prognosis of deep blind orebodies in the gold ore district[J]. Geophysical and Geochemical Exploration, 2003, 27(6):438-440.
Google Scholar
|
| [30] |
李惠, 禹斌, 李永才, 等. 热液型矿床深部盲矿预测的构造叠加晕实用理想模型及其意义[J]. 地质与勘探, 2020, 56(5):889-897.
Google Scholar
|
| [31] |
Li H, Yu B, Li Y C, et al. A new practical ideal model of structural superimposed halos for prediction of deep blind hydrothermal deposits and its significance[J]. Geology and Exploration, 2020, 56(5):889-897.
Google Scholar
|
| [32] |
王文, 李鹏, 夏有清, 等. 东昆仑大场金矿田扎家同哪矿床地质特征及找矿方向[J]. 青海大学学报:自然科学版, 2012, 30(5):60-68.
Google Scholar
|
| [33] |
Wang W, Li P, Xia Y Q, et al. Geological features and prospecting orientation of Zhajiatongna deposit in Dachang golden orefield of Eastern Kunlun mountain[J]. Journal of Qinghai University:Nature Science Edition, 2012, 30(5):60-68.
Google Scholar
|
| [34] |
袁兆宪, 侯振广, 任志栋, 等. 金属元素形成原生晕能力定量评价——以青海省扎家同哪金矿为例[J]. 物探与化探, 2021, 45(1):292-300.
Google Scholar
|
| [35] |
Yuan Z X, Hou Z G, Ren Z D, et al. Quantitative evaluation of the ability of elements in forming primary halos:A case study of the Zhajiatongna gold deposit,Qinghai Province[J]. Geophysical and Geochemical Exploration, 2021, 45(1):292-300.
Google Scholar
|
| [36] |
刘英俊, 曹励明, 李兆麟, 等. 元素地球化学[M]. 北京: 科学出版社, 1984.
Google Scholar
|
| [37] |
Liu Y J, Cao L M, Li Z L, et al. Element geochemistry[M]. Beijing: Science Press, 1984.
Google Scholar
|
| [38] |
Thompson J F, Sillitoe R H, Baker T, et al. Intrusion-related gold deposits associated with tungsten-tin provinces[J]. Mineralium Deposita, 1999, 34(4):323-334.
Google Scholar
|
| [39] |
刘建明, 周渝峰, 付仁平, 等. 杂多酸络合物及其与热液成矿元素组合的关系[J]. 矿物岩石, 1994, 4(4):76-84.
Google Scholar
|
| [40] |
Liu J M, Zhou Y F, Fu R P, et al. Heteropolyacide complexes in relationship to hydrothermal paragenesis of ore elements[J]. Journal of Mineralogy and Petrology, 1994, 4(4):76-84.
Google Scholar
|
| [41] |
刘家军, 刘光智, 廖延福, 等. 甘肃寨上金矿床中白钨矿矿体的发现及其特征[J]. 中国地质, 2008, 35(6):1113-1120.
Google Scholar
|
| [42] |
Liu J J, Liu G Z, Liao Y F, et al. Discovery and significance of scheelite orebodies in the Zhaishang gold deposit,southern Gansu[J]. Geology in China, 2008, 35(6):1113-1120.
Google Scholar
|
| [43] |
Grigoryeva T A, Sukneva L S. Effects of sulfur and of antimony and arsenic sulfide on the solubility of gold[J]. Geochimica et Cosmochimica, 1981, 18:153-158.
Google Scholar
|
| [44] |
Akhmedzhanova G M, Nekrasov I Y, Tikhomirova V I, et al. Solubility of gold in sulfide-arsenide solutions at 200-300 ℃[J]. Earth Science Sections, 1998, 300(3):189-191.
Google Scholar
|
| [45] |
丁清峰, 王冠, 孙丰月, 等. 青海省曲麻莱县大场金矿床成矿流体演化:来自流体包裹体研究和毒砂地温计的证据[J]. 岩石学报, 2020, 26(12):3709-3719.
Google Scholar
|
| [46] |
Ding Q F, Wang G, Sun F Y, et al. Ore-forming fluid evolution of Dachang gold deposit in Qumalai County,Qinghai Province:Evidence from fluid inclusion study and arsenopyrite geothermometer[J]. Acta Petrologica Sinica, 2010, 26(12):3709-3719.
Google Scholar
|