China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2022 Vol. 46, No. 4
Article Contents

WANG Peng, ZHAO Jun, LIU Tuo, ZHOU Yi-Fan, WEI Jin-Ping, WANG Lei. 2022. Scale effects of spatial variations in SOM and STN in semi-arid regions: A case study of Yan'an. Geophysical and Geochemical Exploration, 46(4): 1011-1020. doi: 10.11720/wtyht.2022.1404
Citation: WANG Peng, ZHAO Jun, LIU Tuo, ZHOU Yi-Fan, WEI Jin-Ping, WANG Lei. 2022. Scale effects of spatial variations in SOM and STN in semi-arid regions: A case study of Yan'an. Geophysical and Geochemical Exploration, 46(4): 1011-1020. doi: 10.11720/wtyht.2022.1404

Scale effects of spatial variations in SOM and STN in semi-arid regions: A case study of Yan'an

  • Taking high-density sampling data as a dataset, the sampling spatial distribution scenarios on different scales were simulated through resampling analysis. Spatial analysis methods, such as Moran's I index, semi-variance function value, and fractal dimension FD, were used to explore the scale effects of spatial variations in soil organic matter (SOM) and soil total nitrogen (STN) and to analyze the conversion of influencing factors between different scales. The results are as follows. With an increase in scale, the spatial agglomeration decreased, and the spatial variation of SOM and STN in general increased first and then tended to be stable. By contrast, the random variation decreased gradually and the structural variation increased first and then decreased as the scales increased. The spatial variation generated on small scales consisted of a large proportion of random variation and a small proportion of structural variation, while the opposite is true on large scales. Different influencing factors had different distinguishing degrees for the spatial variations in SOM and STN. Their distinguishing degrees were in the order of height
  • 加载中
  • [1] 齐雁冰, 常庆瑞, 刘梦云, 等. 县域农田土壤养分空间变异及合理样点数确定[J]. 土壤通报, 2014, 45(3):556-561.

    Google Scholar

    [2] Qi Y B, Chang Q R, Liu M Y, et al. County-scale spatial variability of soil nutrient distribution and determination of reasonable sampling density[J]. Chinese Journal of Soil Science, 2014, 45(3):556-561.

    Google Scholar

    [3] 张法升, 刘作新. 分形理论及其在土壤空间变异研究中的应用[J]. 应用生态学报, 2011, 22(5):1351-1358.

    Google Scholar

    [4] Zhang F S, Liu Z X. Fractal theory and its application in the analysis of soil spatial variability:A review[J]. Chinese Journal of Applied Ecology, 2011, 22(5): 1351-1358.

    Google Scholar

    [5] Heuvelink GBM, Webster R. Modelling soil variation:Past, present and future[J]. Geoderma, 2001, 100: 269-301.

    Google Scholar

    [6] Jenny H. Factors of soil formation:A system of quantitative pedology[M]. New York: Dover Publications, 1994.

    Google Scholar

    [7] 姜秋香, 付强, 王子龙. 空间变异理论在土壤特性分析中的应用研究进展[J]. 水土保持研究, 2007, 14(4): 413-415.

    Google Scholar

    [8] Jiang Q X, Fu Q, Wang Z L. Research progress of the spatial variability theory in application to soil characteristic analysis[J]. Research of Soil and Water Conservation, 2007, 14(4): 413-415.

    Google Scholar

    [9] 霍霄妮, 李红, 张微微, 等. 北京耕作土壤重金属多尺度空间结构[J]. 农业工程学报, 2009, 25(3):223-229.

    Google Scholar

    [10] Huo X N, Li H, Zhang W W, et al. Multi-S spatial structure of heavy metals in Beijing cultivated soils[J]. Transactions of the CSAE, 2009, 25(3): 223-229.

    Google Scholar

    [11] 潘瑜春, 刘巧芹, 阎波杰, 等. 采样尺度对土壤养分空间变异分析的影响[J]. 土壤通报, 2010, 41(2):257-262.

    Google Scholar

    [12] Pan Y C, Liu Q Q, Yan B J, et al. Effects of sampling S on soil nutrition spatial variability analysis[J]. Chinese Journal of Soil Science, 2010, 41(2): 257-262.

    Google Scholar

    [13] 雷咏雯, 危常州, 李俊华, 等. 不同尺度下土壤养分空间变异特征的研究[J]. 土壤, 2004, 36(4):376-381.

    Google Scholar

    [14] Lei Y W, Wei C Z, Li J H, et al. Characters of soil nutrient spatial variability in different S[J]. Soil, 2004, 36(4): 376-381.

    Google Scholar

    [15] 刘伟, 郜允兵, 周艳兵, 等. 农田土壤重金属空间变异多尺度分析——以北京顺义土壤Cd为例[J]. 农业环境科学学报, 2019, 38(1):87-94.

    Google Scholar

    [16] Liu W, Gao Y B, Zhou Y B, et al. Multi-S analysis of spatial variability of heavy metals in farmland soils: Case study of soil Cd in Shunyi District of Beijing,China[J]. Journal of Agro-Environment Science, 2019, 38(1): 87-94.

    Google Scholar

    [17] 郑袁明, 陈煌, 陈同斌, 等. 北京市土壤中Cr、Ni含量的空间结构与分布特征[J]. 第四纪研究, 2003, 23(4):436-445.

    Google Scholar

    [18] Zheng Y M, Chen H, Chen T B, et al. Spatialdistribution patterns of Cr and Ni in soils of beijing[J]. Quaternary Sciences, 2003, 23(4): 436-445.

    Google Scholar

    [19] 陈涛, 常庆瑞, 刘钊, 等. 耕地土壤有机质与全氮空间变异性对粒度的响应研究[J]. 农业机械学报, 2013, 44(10):122-129.

    Google Scholar

    [20] Chen T, Chang Q R, Liu Z, et al. Spatial variablility response of farmland soil organic matter and total nitrogen to sampling grain size[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(10):122-129.

    Google Scholar

    [21] 王鹏, 刘拓, 邱德明. 基于局部惩罚型变权的建设用地生态适宜性空间模糊评价——以陕西延安宝塔区为例[J]. 西北地质, 2021, 54(1):232-241.

    Google Scholar

    [22] Wang P, Liu T, Qiu D M. Spatial fuzzy assessment of ecological suitability for urban land based on local penalty variable weights:A case study of Baota district[J]. Northwestern Geogloy, 2021, 54(1):232-241.

    Google Scholar

    [23] 杨奇勇, 杨劲松, 刘广明. 土壤速效养分空间变异的尺度效应[J]. 应用生态学报, 2011, 22(2):431-436.

    Google Scholar

    [24] Yang Q Y, Yang J S, Liu G M. S-dependency of spatial variability of soil available nutrients[J]. Chinese Journal of Applied Ecology, 2011, 22(2): 431-436.

    Google Scholar

    [25] Antonio P M. Spatial variability patterns of phosphorus and potassium in no-tilled soils for two sampling scales[J]. Soil Science Society of America Journal, 1996, 60(5): 1473-1481.

    Google Scholar

    [26] 李小昱, 雷廷武, 王为. 农田土壤特性的空间变异性及分形特征[J]. 干旱地区农业研究, 2000, 18(4): 61-65.

    Google Scholar

    [27] Li X Y, Lei T W, Wang W. Spatial variablelity and fractal dimension of soil property in field[J]. Agricultural Research in the Arid Areas, 2000, 18(4): 61-65.

    Google Scholar

    [28] 沈思源. 土壤空间变异研究中地统计学的应用及其展望[J]. 土壤学进展, 1989, 17(3):11-25.

    Google Scholar

    [29] Shen S Y. Application and prospect of geostatistics in soil spatial variability research[J]. Advances in Soil Science, 1989, 17(3): 11-25.

    Google Scholar

    [30] 盛建东, 肖华, 武红旗, 等. 不同取样间距农田土壤全量养分空间变异特征研究[J]. 土壤通报, 2006, 37(6):1062-1065.

    Google Scholar

    [31] Sheng J D, Xiao H, Wu H Q, et al. Spatial variability of total nutrients in arable soil as affected by different sampling distances[J]. Chinese Journal of Soil Science, 2006, 37(6) : 1062-1065.

    Google Scholar

    [32] 李雅琦, 田均良, 刘普灵. 黄土高原土壤元素含量地域分异规律[J]. 西北农业学报, 2000, 9(3):63-66.

    Google Scholar

    [33] Li Y Q, Tian J L, Liu P L. A Study on laws of regional variance of soil element in loess plateau through trend surface analysis method[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2000, 9(3):63-66.

    Google Scholar

    [34] 王鹏, 段星星, 赵禹, 等. 治沟造地新增耕地的土壤质量评价——延安宝塔区为例[J]. 土地开发工程研究, 2019, 4(1):41-45.

    Google Scholar

    [35] Wang P, Duan X X, Zhao Y, et al. The evaluation of soil nutrient status in newly reclaimed land from trench construction:Taking Baota district of Yan'an city as example[J]. Land Development and Engineering Research, 2019, 4(1):41-45.

    Google Scholar

    [36] 陈云坪, 王秀, 马伟, 等. 小麦多年产量空间变异与空间关联分析[J]. 农业机械学报, 2010, 41(10):180-184.

    Google Scholar

    [37] Chen Y P, Wang X, Ma W, et al. Spatial autocorrelation analysis of wheat yield over five years[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(10): 180-184.

    Google Scholar

    [38] Burrough P A. Multiscale sources of spatial variation in soil. I. The application of fractal concepts to nested levelsof soil variation[J]. European Journal of Soil Science, 1983, 34: 577-597.

    Google Scholar

    [39] 张忠启. 采样点布设与区域土壤有机碳变异性研究[M]. 北京: 科学出版社, 2019:110-128.

    Google Scholar

    [40] Zhang Z Q. Sampling site arrangement and regional soil organic carbon variability[M]. Beijing: Science Press, 2019:110-128.

    Google Scholar

    [41] Lei G, Shao M A. The interpolation accuracy for seven soil properties at various sampling Ss on the Loess Plateau, China[J]. Journal of Soils and Sediments, 2012, 12(2): 128-142.

    Google Scholar

    [42] Daniels, Lee W. The Nature and Properties of Soils, 15th Edition[J]. Soil Science Society of America Journal, 2016, 80(5):1428.

    Google Scholar

    [43] 李元年. 基于熵理论的指标体系区分度测算与权重设计[D]. 南京: 南京航空航天大学, 2008.

    Google Scholar

    [44] Li Y N. Evaluation and weight design of index system based on entropy theory[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008.

    Google Scholar

    [45] 王鹏, 刘拓, 段星星, 等. 基于熵权的土壤养分地球化学多级模糊综合评判——以陕西省关中地区为例[J]. 水土保持通报, 2019, 39(6):136-141.

    Google Scholar

    [46] Wang P, Liu T, Duan X X, et al. Multi-stage fuzzy comprehensive evaluation of soil nutrient geochemistry based on entropy weight:Take Guanzhong region for example[J]. Bulletin of Soil and Water Conservation, 2019, 39(6):136-141.

    Google Scholar

    [47] 金继运, 白山路. 精准农业与土壤养分管理[M]. 北京: 中国大地出版社, 2001:5l-57.

    Google Scholar

    [48] Jin J Y, Bai S L. Precision agriculture and soil nutrient management[M]. Beijing: China Dadi Publishing House, 2001:5l-57.

    Google Scholar

    [49] 王鹏, 刘拓. 延安市宝塔区土壤养分地球化学评价中的变权效果[J]. 物探与化探, 2020, 44(4):847-854.

    Google Scholar

    [50] Wang P, Liu T. Variational weight effect in the geochemical evaluation of soil nutrients in Baota District of Yan'an City[J]. Geophysical and Geochemical Exploration, 2020, 44(4):847-854.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(321) PDF downloads(90) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint