China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2022 Vol. 46, No. 4
Article Contents

ZHOU Dong, LIU Mao-Mao, LIU Zong-Hui, LIU Bao-Dong. 2022. Automatic detection of multiple pavement layers based on the cosine of instantaneous phase of ground penetrating radar data. Geophysical and Geochemical Exploration, 46(4): 961-967. doi: 10.11720/wtyht.2022.1363
Citation: ZHOU Dong, LIU Mao-Mao, LIU Zong-Hui, LIU Bao-Dong. 2022. Automatic detection of multiple pavement layers based on the cosine of instantaneous phase of ground penetrating radar data. Geophysical and Geochemical Exploration, 46(4): 961-967. doi: 10.11720/wtyht.2022.1363

Automatic detection of multiple pavement layers based on the cosine of instantaneous phase of ground penetrating radar data

  • Horizon characteristics are important information in pavement detection using ground penetrating radar (GPR) data.However,current horizon picking methods based on manual work or related algorithms have problems such as strong subjectivity and heavy workload and they can only track one horizon each time.Therefore,this study proposed a multi-layer auto-tracking method based on the cosine of the instantaneous phase of GPR data.The specific steps of this method are as follows.Firstly,obtain the cosine of the instantaneous phase of GPR data through complex signal analysis.Secondly,carry out the correlation analysis of wavelet cosine matrix data and then calculate the cosine of the instantaneous phase of these data,aiming to enhance the transverse continuity of phase data along the cophase axis.Thirdly,obtain the spatial positions,amplitude,and polarity of the phase data,and automatically track the transversely continuous horizon lines under a series of constraints such as signal amplitude and cophase axis characteristics.Finally,determine the horizon data and their polarity by comparing the RMS values of the amplitude of adjacent horizon lines along the depth direction,and extract the horizon line data with continuous high amplitude by setting horizon and amplitude thresholds.Numerical simulation and field case analysis have verified the effectiveness and adaptability of the method proposed in this study.
  • 加载中
  • [1] Torbaghan M E, Li W, Metje N, et al. Automated detection of cracks in roads using ground penetrating radar[J]. Journal of Applied Geophysics, 2020, 179:1-12.

    Google Scholar

    [2] Xu X J, Lei Y, Yang F. Railway subgrade defect automatic recognition method based on improved faster R-CNN[J]. Scientific Programming, 2018(6):1-12.

    Google Scholar

    [3] 韩佳明, 仲鑫, 景帅, 等. 探地雷达在黄土地区城市地质管线探测中的应用[J]. 物探与化探, 2020, 44(6):1476-1481.

    Google Scholar

    [4] Han J M, Zhong X, Jing S, et al. The application of geological radar to urban geological pipeline detection in the loess area[J]. Geophysical and Geochemical Exploration, 2020, 44(6):1476-1481.

    Google Scholar

    [5] 许泽善, 周江涛, 刘四新, 等. 三维步进频率探地雷达在沥青层厚度检测中的应用[J]. 物探与化探, 2019, 43(5):1145-1150.

    Google Scholar

    [6] Xu Z S, Zhou J T, Liu S X, et al. The realization of applying 3D frequency stepped ground penetrating to the detection of asphalt layer thickness[J]. Geophysical and Geochemical Exploration, 2019, 43(5):1145-1150.

    Google Scholar

    [7] 郑公营, 曾婷婷. 地震层位自动追踪技术研究[J]. 物探化探计算技术, 2013, 35(6):711-716.

    Google Scholar

    [8] Zheng G Y, Zeng T T. The technology of seismic horizon automatic tracking[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2013, 35(6):711-716.

    Google Scholar

    [9] 张泉, 朱连章, 郭加树, 等. 地震DNA算法的改进及其在地震层位拾取中的应用[J]. 石油物探, 2017, 56(3):400-407.

    Google Scholar

    [10] Zhang Q, Zhu L Z, Guo J S, et al. The improvement of seismic DNA algorithm and its application in automatic horizon pickup[J]. Geophysical Prospecting for Petroleum, 2017, 56(3):400-407.

    Google Scholar

    [11] 刘鑫, 车翔玖, 林森乔. 基于倾角校正的地震层位追踪算法[J]. 图学学报, 2015, 36(3):418-424.

    Google Scholar

    [12] Liu X, Che Y J, Lin S Q. Seismic horizon extraction based on dip correction[J]. Journal of Graphics, 2015, 36(3):418-424.

    Google Scholar

    [13] 蒋旭东, 曹俊兴, 胡江涛. 基于结构导向的层位自动追踪[J]. 石油物探, 2018, 57(5):726-732.

    Google Scholar

    [14] Jiang X D, Cao J X, Hu J T. Structure-oriented automatic horizons tracking[J]. Geophysical Prospecting for Petroleum, 2018, 57(5):726-732.

    Google Scholar

    [15] Le Bastard C, Baltazart V, Wang Y, et al. Thin-pavement thickness estimation using GPR with high-resolution and superresolution methods[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(8):2511-2519.

    Google Scholar

    [16] Wu X M, Hale D. Horizon volumes with interpreted constraints[J]. Geophysics, 2014, 80(2):M21-M33.

    Google Scholar

    [17] Zabihi Naeini E, Hale D. Image- and horizon-guided interpolation[J]. Geophysics, 2015, 80(3):V47-V56.

    Google Scholar

    [18] 刘旭跃, 周巍, 张兵, 等. 一种基于图像学的地震层位自动追踪方法[J]. 物探化探计算技术, 2017, 39(1):64-70.

    Google Scholar

    [19] Liu X Y, Zhou W, Zhang B, et al. An automatic tracking method for seismic horizons based on image theory[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2017, 39(1):64-70.

    Google Scholar

    [20] Lahouar S, Al-Qadi I L. Automatic detection of multiple pavement layers from GPR data[J]. Ndt and E International, 2008, 41(2):69-81.

    Google Scholar

    [21] Loizos A, Plati C. Accuracy of pavement thicknesses estimation using different ground penetrating radar analysis approaches[J]. Ndt and E International, 2007, 40(2):147-157.

    Google Scholar

    [22] 周辉林, 姜玉玲, 徐立红, 等. 基于SVM的高速公路路基病害自动检测算法[J]. 中国公路学报, 2013, 26(2):42-47.

    Google Scholar

    [23] Zhou H L, Jiang Y L, Xu L H, et al. Automatic detection algorithm for expressway subgrade diseases based on SVM[J]. China Journal of Highway and Transport, 2013, 26(2):42-47.

    Google Scholar

    [24] Le Bastard C, Wang Y, Baltazart V, et al. Time delay and permittivity estimation by ground-penetrating radar with support vector regression[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(4):873-877.

    Google Scholar

    [25] Zhao S, Shangguan P, Al-Qadi I L. Application of regularized deconvolution technique for predicting pavement thin layer thicknesses from ground penetrating radar data[J]. Ndt and E International, 2015, 73:1-7.

    Google Scholar

    [26] Craig W, Antonios G, Iraklis G. gprMax:Open source software to simulate electromagnetic wave propagation for Ground Penetrating Radar[J]. Computer Physics Communications, 2016, 209:163-170.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(680) PDF downloads(81) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint