[1] |
Torbaghan M E, Li W, Metje N, et al. Automated detection of cracks in roads using ground penetrating radar[J]. Journal of Applied Geophysics, 2020, 179:1-12.
Google Scholar
|
[2] |
Xu X J, Lei Y, Yang F. Railway subgrade defect automatic recognition method based on improved faster R-CNN[J]. Scientific Programming, 2018(6):1-12.
Google Scholar
|
[3] |
韩佳明, 仲鑫, 景帅, 等. 探地雷达在黄土地区城市地质管线探测中的应用[J]. 物探与化探, 2020, 44(6):1476-1481.
Google Scholar
|
[4] |
Han J M, Zhong X, Jing S, et al. The application of geological radar to urban geological pipeline detection in the loess area[J]. Geophysical and Geochemical Exploration, 2020, 44(6):1476-1481.
Google Scholar
|
[5] |
许泽善, 周江涛, 刘四新, 等. 三维步进频率探地雷达在沥青层厚度检测中的应用[J]. 物探与化探, 2019, 43(5):1145-1150.
Google Scholar
|
[6] |
Xu Z S, Zhou J T, Liu S X, et al. The realization of applying 3D frequency stepped ground penetrating to the detection of asphalt layer thickness[J]. Geophysical and Geochemical Exploration, 2019, 43(5):1145-1150.
Google Scholar
|
[7] |
郑公营, 曾婷婷. 地震层位自动追踪技术研究[J]. 物探化探计算技术, 2013, 35(6):711-716.
Google Scholar
|
[8] |
Zheng G Y, Zeng T T. The technology of seismic horizon automatic tracking[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2013, 35(6):711-716.
Google Scholar
|
[9] |
张泉, 朱连章, 郭加树, 等. 地震DNA算法的改进及其在地震层位拾取中的应用[J]. 石油物探, 2017, 56(3):400-407.
Google Scholar
|
[10] |
Zhang Q, Zhu L Z, Guo J S, et al. The improvement of seismic DNA algorithm and its application in automatic horizon pickup[J]. Geophysical Prospecting for Petroleum, 2017, 56(3):400-407.
Google Scholar
|
[11] |
刘鑫, 车翔玖, 林森乔. 基于倾角校正的地震层位追踪算法[J]. 图学学报, 2015, 36(3):418-424.
Google Scholar
|
[12] |
Liu X, Che Y J, Lin S Q. Seismic horizon extraction based on dip correction[J]. Journal of Graphics, 2015, 36(3):418-424.
Google Scholar
|
[13] |
蒋旭东, 曹俊兴, 胡江涛. 基于结构导向的层位自动追踪[J]. 石油物探, 2018, 57(5):726-732.
Google Scholar
|
[14] |
Jiang X D, Cao J X, Hu J T. Structure-oriented automatic horizons tracking[J]. Geophysical Prospecting for Petroleum, 2018, 57(5):726-732.
Google Scholar
|
[15] |
Le Bastard C, Baltazart V, Wang Y, et al. Thin-pavement thickness estimation using GPR with high-resolution and superresolution methods[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(8):2511-2519.
Google Scholar
|
[16] |
Wu X M, Hale D. Horizon volumes with interpreted constraints[J]. Geophysics, 2014, 80(2):M21-M33.
Google Scholar
|
[17] |
Zabihi Naeini E, Hale D. Image- and horizon-guided interpolation[J]. Geophysics, 2015, 80(3):V47-V56.
Google Scholar
|
[18] |
刘旭跃, 周巍, 张兵, 等. 一种基于图像学的地震层位自动追踪方法[J]. 物探化探计算技术, 2017, 39(1):64-70.
Google Scholar
|
[19] |
Liu X Y, Zhou W, Zhang B, et al. An automatic tracking method for seismic horizons based on image theory[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2017, 39(1):64-70.
Google Scholar
|
[20] |
Lahouar S, Al-Qadi I L. Automatic detection of multiple pavement layers from GPR data[J]. Ndt and E International, 2008, 41(2):69-81.
Google Scholar
|
[21] |
Loizos A, Plati C. Accuracy of pavement thicknesses estimation using different ground penetrating radar analysis approaches[J]. Ndt and E International, 2007, 40(2):147-157.
Google Scholar
|
[22] |
周辉林, 姜玉玲, 徐立红, 等. 基于SVM的高速公路路基病害自动检测算法[J]. 中国公路学报, 2013, 26(2):42-47.
Google Scholar
|
[23] |
Zhou H L, Jiang Y L, Xu L H, et al. Automatic detection algorithm for expressway subgrade diseases based on SVM[J]. China Journal of Highway and Transport, 2013, 26(2):42-47.
Google Scholar
|
[24] |
Le Bastard C, Wang Y, Baltazart V, et al. Time delay and permittivity estimation by ground-penetrating radar with support vector regression[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(4):873-877.
Google Scholar
|
[25] |
Zhao S, Shangguan P, Al-Qadi I L. Application of regularized deconvolution technique for predicting pavement thin layer thicknesses from ground penetrating radar data[J]. Ndt and E International, 2015, 73:1-7.
Google Scholar
|
[26] |
Craig W, Antonios G, Iraklis G. gprMax:Open source software to simulate electromagnetic wave propagation for Ground Penetrating Radar[J]. Computer Physics Communications, 2016, 209:163-170.
Google Scholar
|