China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2022 Vol. 46, No. 4
Article Contents

YANG Hong-Wei, WANG Ji-Chuan, KONG Qing-Feng, GU Bing-Luo, SUN Wei-Guo, LI Zhen-Chun. 2022. An analysis of influencing factors of visco-acoustic reverse time migration imaging in borehole seismic. Geophysical and Geochemical Exploration, 46(4): 877-886. doi: 10.11720/wtyht.2022.1307
Citation: YANG Hong-Wei, WANG Ji-Chuan, KONG Qing-Feng, GU Bing-Luo, SUN Wei-Guo, LI Zhen-Chun. 2022. An analysis of influencing factors of visco-acoustic reverse time migration imaging in borehole seismic. Geophysical and Geochemical Exploration, 46(4): 877-886. doi: 10.11720/wtyht.2022.1307

An analysis of influencing factors of visco-acoustic reverse time migration imaging in borehole seismic

  • At present,the targets of oil and gas exploration have transformed from simple structural oil and gas reservoirs into deep complex structural oil and gas reservoirs.The small thickness,wide distribution,and hidden occurrence state of the reservoirs pose great challenges to seismic migration imaging technology.Compared with ground seismic,the seismic sources of the borehole seismic are located in wells and close to target layers.Meanwhile,the times that wave field induced by the borehole seismic passes through the low-velocity zone reduce by one.Therefore,the borehole seismic has the advantages of high signal-to-noise ratio (SNR) of data and strong reservoir identification in theory and thus can serve the purpose of the fine imaging of the reservoirs around wells.However,the special observation method makes it difficult to directly apply mature ground seismic imaging technology to the borehole seismic.In addition,due to the weak source energy of the borehole seismic,the formation absorption attenuation effect produces stronger impacts on the borehole seismic than on the ground seismic.Therefore,it is necessary to develop a targeted migration imaging method for borehole seismic.This study applied the visco-acoustic reverse-time migration imaging method to the borehole seismic and discussed the influence of various factors on the migration imaging effect of borehole seismic through model calculation,aiming to provide theoretical and technical support for the practical application of borehole seismic technology.
  • 加载中
  • [1] 何登发, 李德生, 童晓光, 等. 中国沉积盆地油气立体综合勘探论[J]. 石油与天然气地质, 2021, 42(2):265-284.

    Google Scholar

    [2] He D F, Li D S, Tong X G, et al. Integrated 3D hydrocarbon exploration in sedimentary basins of China[J]. Oil & Gas Geology, 2021, 42(2):265-284.

    Google Scholar

    [3] Weatherby B B. Method of making sub-surface determinations[P]. US, US2062151,

    Google Scholar

    [4] Deily F H, Dareing D W, Paff G H, et al. Downhole measurements of drill string forces and motions[J]. Journal of Engineering for Industry, 1968, 90(2):217-225.

    Google Scholar

    [5] Squire W D, Alsup J M. Linear signal processing and ultrasonic transversal filters[J]. IEEE Transactions on Microwave Theory & Techniques, 1969, 17(11):1020-1040.

    Google Scholar

    [6] Haldorsen J, Miller D E, Walsh J J. Walk-away VSP using drill noise as a source[J]. Geophysics, 1995, 60(4):978.

    Google Scholar

    [7] 方家福. RVSP简介[J]. 地震学刊, 1994(2):61-84.

    Google Scholar

    [8] Fang J F. A Brief introduction to RVSP[J]. Journal of Disaster Prevention and Mitigation Engineering, 1994(2):61-84.

    Google Scholar

    [9] 杨微. 随钻地震信号检测方法研究[D]. 北京: 中国地震局地球物理研究所, 2007.

    Google Scholar

    [10] Yang W. Single detection of the drill bit seismic wave whlie drilling[D]. Beijing: Institute of Geophysics,China Earthquake Administration, 2007.

    Google Scholar

    [11] 吕海川, 朱伟伦, 贾衡天, 等. 随钻VSP测量中地震波场的数值模拟[J]. 石油机械, 2017, 45(2):10-12,44.

    Google Scholar

    [12] Lyu H C, Zhu W L, Jia H T, et al. Numerical simulation of seismic wave field in VSP-WD[J]. China Petroleum Machinery, 2017, 45(2):10-12,44.

    Google Scholar

    [13] Liang Z H. Wavefield processing of reverse VSP data[J]. Seg Technical Program Expanded Abstracts, 1991, 10(1):1646.

    Google Scholar

    [14] 胡建平. 变偏移距VSP射线追踪模型[J]. 西安工程学院学报, 1998(S1):10-13.

    Google Scholar

    [15] Hu J P. Walkaway VSP ray tracing model[J]. Journal of Earth Sciences and Environment, 1998(S1):10-13.

    Google Scholar

    [16] 朱龙生. 多方位角逆VSP层析成像[D]. 西安: 长安大学, 2003.

    Google Scholar

    [17] Zhu L S. Multi-azimuth Inverse VSP tomography[D]. Xi'an: Chang'an University, 2003.

    Google Scholar

    [18] 胡明顺. 煤层气RVSP地震勘探成像方法研究[D]. 徐州: 中国矿业大学, 2013.

    Google Scholar

    [19] Hu M S. Study on RVSP seismic imaging for coalbed methane exploration[D]. Xuzhou: China University of Mining and Technology, 2013.

    Google Scholar

    [20] 金红娣, 潘冬明, 杨光. RVSP等效地面处理方法研究[J]. 地球物理学进展, 2015, 30(2):641-649.

    Google Scholar

    [21] Jin H D, Pan D M, Yang G. Study on equivalent surface data processing method in RVSP[J]. Progress in Geophysics, 2015, 30(2):641-649.

    Google Scholar

    [22] 张辉. 碳酸岩裸露区煤田RVSP勘探技术研究与应用[D]. 徐州: 中国矿业大学, 2018.

    Google Scholar

    [23] Zhang H. Research and application of RVSP exploration technology in Carbonate exposed coalfield[D]. Xuzhou: China University of Mining and Technology, 2018.

    Google Scholar

    [24] Hu M S, Pan D M, Zhou F B, et al. Multi-hole joint acquisition of a 3D-RVSP in a karst area:Case study in the Wulunshan Coal Field,China[J]. Appl. Geophys., 2020, 17(1): 37-53.

    Google Scholar

    [25] 陶鹏飞, 尹奇峰, 赵红飞, 等. 井中地震波CT浅层城市地下空间成像[J]. 地下空间与工程学报, 2019, 15(S2):687-693.

    Google Scholar

    [26] Tao P F, Yin Q F, Zhao H F, et al. Shallow surface urban underground space imaging using borehole seismic wave CT[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(S2):687-693.

    Google Scholar

    [27] 赵邦六, 董世泰, 曾忠. 井中地震技术的昨天、今天和明天——井中地震技术发展及应用展望[J]. 石油地球物理勘探, 2017, 52(5):1112-1123.

    Google Scholar

    [28] Zhao B L, Dong S T, Zeng Z. Borehole seismic development,status quo and future:Application prospect of borehole seismic[J]. OGP, 2017, 52(5):1112-1123.

    Google Scholar

    [29] 牛欢, 潘冬明, 周国婷. 井中地震VSP观测系统正演模拟[J]. 物探与化探, 2013, 37(2):280-286.

    Google Scholar

    [30] Niu H, Pan D M, Zhou G T. Forward modeling of borehole seismic VSP observation system[J]. Geophysical and Geochemical Exploration, 2013, 37(2):280-286.

    Google Scholar

    [31] 陈可洋. 几种地震观测方式的逆时成像分析[J]. 岩性油气藏, 2013, 25(1):95-101.

    Google Scholar

    [32] Chen K Y. Reverse-time migration analysis of several seismic observation models[J]. Lithologic Reservoirs, 2013, 25(1):95-101.

    Google Scholar

    [33] Kjartansson E. Constant Q-wave propagation and attenuation[J]. Journal of Geophysical Research:Solid Earth, 1979, 84(B9):4737-4748.

    Google Scholar

    [34] Zhu T, Harris J M. Modeling acoustic wave propagation in heterogeneous attenuating media using decoupled fractional Laplacians[J]. Geophysics, 2014, 79(3):S165-S174.

    Google Scholar

    [35] Claerbout, Jon F. Toward a unified theory of reflector mapping[J]. Geophysics, 1971, 36(3):467.

    Google Scholar

    [36] Billette F J, Brandsberg-Dahl S. The 2004 BP velocity benchmark[C]// 67th EAGE Conference & Exhibition, 2005.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(458) PDF downloads(110) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint