China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2022 Vol. 46, No. 2
Article Contents

XIAO Yue-Tong, WANG Meng, WANG Xing-Zhuo, CHEN Kai, SHI Zong-Yang, ZHAO Yi-Yu, FU Yue-Si. 2022. Research progress of SmNiO3 and feasibility analysis of applying SmNiO3 in ocean electric field sensors. Geophysical and Geochemical Exploration, 46(2): 418-423. doi: 10.11720/wtyht.2022.1255
Citation: XIAO Yue-Tong, WANG Meng, WANG Xing-Zhuo, CHEN Kai, SHI Zong-Yang, ZHAO Yi-Yu, FU Yue-Si. 2022. Research progress of SmNiO3 and feasibility analysis of applying SmNiO3 in ocean electric field sensors. Geophysical and Geochemical Exploration, 46(2): 418-423. doi: 10.11720/wtyht.2022.1255

Research progress of SmNiO3 and feasibility analysis of applying SmNiO3 in ocean electric field sensors

  • Ocean electric field signals are widely used in the fields of geological tectonics, water target detection, physical ocean, and the analysis of ocean physical characteristics. It is of great scientific value to collect the ocean electric field signals, while the ocean electric field is measured using ocean electric field sensors. In recent years, perovskite-type composite oxides have become a research hot spot as new materials. Among these composite oxides, SmNiO3 is the one that possesses some unique properties including metal-insulator phase transition, strong stability in seawater, and high sensitivity to low-frequency electric field signals. Therefore, it is expected to become a new type of electrode materials in ocean electric field sensors. Domestic and foreign researchers have carried out some studies on SmNiO3, which mainly focus on the electrical properties (especially the metal-insulator phase transition and optical properties) and preparation process of SmNiO3. This paper systematically reviews the above research contents and preliminarily explores the feasibility of applying SmNiO3 in marine electric field sensors.
  • 加载中
  • [1] 陈闻博, 宋玉苏, 王烨煊. 海洋电场传感器研究概况[J]. 传感器与微系统, 2019, 38(12):1-4.

    Google Scholar

    [2] Chen W B, Song Y S, Wang Y X. Research situation of marine electric field sensors[J]. Transducer and Microsystem Technologies, 2019, 38(12): 1-4.

    Google Scholar

    [3] 申振, 宋玉苏, 王烨煊, 等. Ag/AgCl和碳纤维海洋电场电极的探测特性研究[J]. 仪器仪表学报, 2018, 39(2):211-217.

    Google Scholar

    [4] Shen Z, Song Y S, Wang Y X, et al. Study on the detection characteristics of Ag /AgCl and carbon fiber marine electric field electrodes[J]. Chinese Journal of scientific instruments, 2018, 39(2): 211-217.

    Google Scholar

    [5] 王杰红. 超低噪声海洋电场传感器的研究[D]. 西安: 西安电子科技大学, 2014.

    Google Scholar

    [6] Wang J H. Research on low noise marine electric field sensor[D]. Xi'an: Xidian University, 2014.

    Google Scholar

    [7] 王泽臣. 海洋电场探测电极研究[D]. 杭州: 杭州电子科技大学, 2020.

    Google Scholar

    [8] Wang Z C. Research on marine electric field detection electrode[D]. Hangzhou: Hangzhou Dianzi University, 2020.

    Google Scholar

    [9] 张翼. 全固态海洋传感器稳定性研究[D]. 西安: 西安电子科技大学, 2009.

    Google Scholar

    [10] Zhang Y. Research on the stability of all solid-state marine sensor[D]. Xi'an: Xidian University, 2009.

    Google Scholar

    [11] 张坤, 宋玉苏, 李瑜. 海洋电场探测电极的研究概况[J]. 材料导报, 2014, 28(21):20-23.

    Google Scholar

    [12] Zhang K, Song Y S, Li Yu. Research status of underwater electric field sensing electrode[J]. Materials Reports, 2014, 28(21): 20-23.

    Google Scholar

    [13] Petiau G, Dupis A. Noise,temperature coefficient, and long time stability of electrodes for telluric observations[J]. Geophysical Prospecting, 2010, 28(5): 792-804.

    Google Scholar

    [14] Yoo P, Liao P. Metal-to-insulator transition in SmNiO3 induced by chemical doping: A first principles study[J]. Molecular Systems Design & Engineering, 2018, 3(1): 264-274.

    Google Scholar

    [15] Zhang Z, Schwanz D, Narayanan B, et al. Perovskite nickelates as electric-field sensors in salt water[J]. Nature, 2018, 553: 68-72.

    Google Scholar

    [16] 贾理男, 富一博, 赵哲, 等. 钙钛矿稀土镍酸盐SmNiO3薄膜的研究进展[J]. 表面技术, 2020, 49(4):151-160,187.

    Google Scholar

    [17] Jia L N, Fu Y B, Zhao Z, et al. Research on progress in perovskite Nickelate SmNiO3 Film[J]. Surface Technology, 2020, 49(4): 151-160, 187.

    Google Scholar

    [18] 孙岩. 钙钛矿SmNiO3外延薄膜的制备及其金属—绝缘体相变的电场调控研究[D]. 上海: 华东师范大学, 2017.

    Google Scholar

    [19] Sun Y. Study on preparation of perovskite SmNiO3 epitaxial thin films and tuning of the metal-insulator transition by electric field[D]. Shanghai: East China Normal University, 2017.

    Google Scholar

    [20] 黄浩亮, 罗震林, 杨远俊. Effect of compressive strain on MI transition in SmNiO3 epitaxial thin films grown on LSAO substrate[C]// 中国材料研究学会, 2011.

    Google Scholar

    [21] Huang H L, Luo Z L, Yang Y J. Effect of compressive strain on MI transition in SmNiO3 epitaxial thin films grown on LSAO substrate[C]// Chinese Society for Materials Research, 2011.

    Google Scholar

    [22] Torriss B, J Margot, M Chaker. Metal-insulator transition of strained SmNiO3 Thin films: Structural, electrical and infrared optical properties[J]. Scientific Reports, 2017, 7(40915): 1-9.

    Google Scholar

    [23] Iqbal A, Khan S A, Rahman N U, et al. Epitaxial growth controlled tailoring of Metal-Insulator (MI) Transition properties of rare earth correlated oxides[C]// The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Waikiki Beach, HI, USA, 2014.

    Google Scholar

    [24] Chen J K, A Bird, Yan F B, et al. Mechanical and correlated electronic transport properties of preferentially orientated SmNiO3 films[J]. Ceramics International, 2020, 46(5):6693-6697.

    Google Scholar

    [25] 白玉杭. 钙钛矿镍酸盐异质结构的制备与性能研究[D]. 南京: 南京大学, 2017.

    Google Scholar

    [26] Bai Y H. Preparation and characterization of perovskite nickelate heterostructures[D]. Nanjing: Nanjing University, 2017.

    Google Scholar

    [27] 胡昌. 钙钛矿型稀土镍酸盐RNiO3薄膜光电性质的研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.

    Google Scholar

    [28] Hu C. Study on Photoelectric properties of perovskite-type rare earth nickel RNiO3 films[D]. Harbin: Harbin Institute of Technology, 2020.

    Google Scholar

    [29] 贾梅秀. 钛酸钡/镍酸钐异质结的阻变机理研究[D]. 上海:华东师范大学, 2019.

    Google Scholar

    [30] Jia M X. Study on the resistive switching mechanism of BaTiO3/SmNiO3 heterojunction[D]. Shanghai:East China Normal University, 2019.

    Google Scholar

    [31] 胡海洋, 陈吉堃, 邵飞, 等. 应力下SmNiO3钙钛矿氧化物薄膜材料的电导与红外光电导[J]. 物理学报, 2019, 68(2):198-207.

    Google Scholar

    [32] Hu H Y, Chen J K, Shao F, et al. Conductivity and infrared photoconductivity of SmNiO3 perovskite oxide thin films under stress[J]. Acta physica Sinica, 2019, 68(2): 198-207.

    Google Scholar

    [33] Chen B J, Sun Y, Yang N. Electronic phase diagram of oxygen-deficient SmNiO3-δ epitaxial thin films[J]. Journal of Physics D: Applied Physics, 2017, 50(23):1.

    Google Scholar

    [34] Lan C, Li H, Zhao S. A first-principles study of the proton and oxygen migration behavior in the rare-earth perovskite SmNiO3[J]. Journal of Computational Electronics, 2020, 19(3): 905-909.

    Google Scholar

    [35] Conchon F, Boulle A, Girardot C, et al. Influence of strain relaxation on the structural stabilization of SmNiO3 films epitaxially grown on (001) SrTiO3 substrates[J]. Materials Science and Engineering. B:Solid State Materials for Advanced Technology, 2007, 144(1-3): 32-37.

    Google Scholar

    [36] Li Z Y, Zhou Y, Qi H, et al. Correlated perovskites as a new platform for super-broadband-tunable photonics[J]. Advanced Materials, 2016, 28(41): 9117-9125.

    Google Scholar

    [37] Cui Y Y, Ren J S, Yang G, et al. First-principles study of intrinsic point defects and optical properties of SmNiO3[J]. The Journal of Physical Chemistry A, 2021, 125(1): 356-365.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1097) PDF downloads(228) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint