| [1] |
陈闻博, 宋玉苏, 王烨煊. 海洋电场传感器研究概况[J]. 传感器与微系统, 2019, 38(12):1-4.
Google Scholar
|
| [2] |
Chen W B, Song Y S, Wang Y X. Research situation of marine electric field sensors[J]. Transducer and Microsystem Technologies, 2019, 38(12): 1-4.
Google Scholar
|
| [3] |
申振, 宋玉苏, 王烨煊, 等. Ag/AgCl和碳纤维海洋电场电极的探测特性研究[J]. 仪器仪表学报, 2018, 39(2):211-217.
Google Scholar
|
| [4] |
Shen Z, Song Y S, Wang Y X, et al. Study on the detection characteristics of Ag /AgCl and carbon fiber marine electric field electrodes[J]. Chinese Journal of scientific instruments, 2018, 39(2): 211-217.
Google Scholar
|
| [5] |
王杰红. 超低噪声海洋电场传感器的研究[D]. 西安: 西安电子科技大学, 2014.
Google Scholar
|
| [6] |
Wang J H. Research on low noise marine electric field sensor[D]. Xi'an: Xidian University, 2014.
Google Scholar
|
| [7] |
王泽臣. 海洋电场探测电极研究[D]. 杭州: 杭州电子科技大学, 2020.
Google Scholar
|
| [8] |
Wang Z C. Research on marine electric field detection electrode[D]. Hangzhou: Hangzhou Dianzi University, 2020.
Google Scholar
|
| [9] |
张翼. 全固态海洋传感器稳定性研究[D]. 西安: 西安电子科技大学, 2009.
Google Scholar
|
| [10] |
Zhang Y. Research on the stability of all solid-state marine sensor[D]. Xi'an: Xidian University, 2009.
Google Scholar
|
| [11] |
张坤, 宋玉苏, 李瑜. 海洋电场探测电极的研究概况[J]. 材料导报, 2014, 28(21):20-23.
Google Scholar
|
| [12] |
Zhang K, Song Y S, Li Yu. Research status of underwater electric field sensing electrode[J]. Materials Reports, 2014, 28(21): 20-23.
Google Scholar
|
| [13] |
Petiau G, Dupis A. Noise,temperature coefficient, and long time stability of electrodes for telluric observations[J]. Geophysical Prospecting, 2010, 28(5): 792-804.
Google Scholar
|
| [14] |
Yoo P, Liao P. Metal-to-insulator transition in SmNiO3 induced by chemical doping: A first principles study[J]. Molecular Systems Design & Engineering, 2018, 3(1): 264-274.
Google Scholar
|
| [15] |
Zhang Z, Schwanz D, Narayanan B, et al. Perovskite nickelates as electric-field sensors in salt water[J]. Nature, 2018, 553: 68-72.
Google Scholar
|
| [16] |
贾理男, 富一博, 赵哲, 等. 钙钛矿稀土镍酸盐SmNiO3薄膜的研究进展[J]. 表面技术, 2020, 49(4):151-160,187.
Google Scholar
|
| [17] |
Jia L N, Fu Y B, Zhao Z, et al. Research on progress in perovskite Nickelate SmNiO3 Film[J]. Surface Technology, 2020, 49(4): 151-160, 187.
Google Scholar
|
| [18] |
孙岩. 钙钛矿SmNiO3外延薄膜的制备及其金属—绝缘体相变的电场调控研究[D]. 上海: 华东师范大学, 2017.
Google Scholar
|
| [19] |
Sun Y. Study on preparation of perovskite SmNiO3 epitaxial thin films and tuning of the metal-insulator transition by electric field[D]. Shanghai: East China Normal University, 2017.
Google Scholar
|
| [20] |
黄浩亮, 罗震林, 杨远俊. Effect of compressive strain on MI transition in SmNiO3 epitaxial thin films grown on LSAO substrate[C]// 中国材料研究学会, 2011.
Google Scholar
|
| [21] |
Huang H L, Luo Z L, Yang Y J. Effect of compressive strain on MI transition in SmNiO3 epitaxial thin films grown on LSAO substrate[C]// Chinese Society for Materials Research, 2011.
Google Scholar
|
| [22] |
Torriss B, J Margot, M Chaker. Metal-insulator transition of strained SmNiO3 Thin films: Structural, electrical and infrared optical properties[J]. Scientific Reports, 2017, 7(40915): 1-9.
Google Scholar
|
| [23] |
Iqbal A, Khan S A, Rahman N U, et al. Epitaxial growth controlled tailoring of Metal-Insulator (MI) Transition properties of rare earth correlated oxides[C]// The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Waikiki Beach, HI, USA, 2014.
Google Scholar
|
| [24] |
Chen J K, A Bird, Yan F B, et al. Mechanical and correlated electronic transport properties of preferentially orientated SmNiO3 films[J]. Ceramics International, 2020, 46(5):6693-6697.
Google Scholar
|
| [25] |
白玉杭. 钙钛矿镍酸盐异质结构的制备与性能研究[D]. 南京: 南京大学, 2017.
Google Scholar
|
| [26] |
Bai Y H. Preparation and characterization of perovskite nickelate heterostructures[D]. Nanjing: Nanjing University, 2017.
Google Scholar
|
| [27] |
胡昌. 钙钛矿型稀土镍酸盐RNiO3薄膜光电性质的研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
Google Scholar
|
| [28] |
Hu C. Study on Photoelectric properties of perovskite-type rare earth nickel RNiO3 films[D]. Harbin: Harbin Institute of Technology, 2020.
Google Scholar
|
| [29] |
贾梅秀. 钛酸钡/镍酸钐异质结的阻变机理研究[D]. 上海:华东师范大学, 2019.
Google Scholar
|
| [30] |
Jia M X. Study on the resistive switching mechanism of BaTiO3/SmNiO3 heterojunction[D]. Shanghai:East China Normal University, 2019.
Google Scholar
|
| [31] |
胡海洋, 陈吉堃, 邵飞, 等. 应力下SmNiO3钙钛矿氧化物薄膜材料的电导与红外光电导[J]. 物理学报, 2019, 68(2):198-207.
Google Scholar
|
| [32] |
Hu H Y, Chen J K, Shao F, et al. Conductivity and infrared photoconductivity of SmNiO3 perovskite oxide thin films under stress[J]. Acta physica Sinica, 2019, 68(2): 198-207.
Google Scholar
|
| [33] |
Chen B J, Sun Y, Yang N. Electronic phase diagram of oxygen-deficient SmNiO3-δ epitaxial thin films[J]. Journal of Physics D: Applied Physics, 2017, 50(23):1.
Google Scholar
|
| [34] |
Lan C, Li H, Zhao S. A first-principles study of the proton and oxygen migration behavior in the rare-earth perovskite SmNiO3[J]. Journal of Computational Electronics, 2020, 19(3): 905-909.
Google Scholar
|
| [35] |
Conchon F, Boulle A, Girardot C, et al. Influence of strain relaxation on the structural stabilization of SmNiO3 films epitaxially grown on (001) SrTiO3 substrates[J]. Materials Science and Engineering. B:Solid State Materials for Advanced Technology, 2007, 144(1-3): 32-37.
Google Scholar
|
| [36] |
Li Z Y, Zhou Y, Qi H, et al. Correlated perovskites as a new platform for super-broadband-tunable photonics[J]. Advanced Materials, 2016, 28(41): 9117-9125.
Google Scholar
|
| [37] |
Cui Y Y, Ren J S, Yang G, et al. First-principles study of intrinsic point defects and optical properties of SmNiO3[J]. The Journal of Physical Chemistry A, 2021, 125(1): 356-365.
Google Scholar
|