China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2022 Vol. 46, No. 2
Article Contents

CHEN Hai-Long, XIAO Qi-Peng, XU Zhi-Bin, YANG Hai-Yan, LIANG Ju-Hong, YIN Da-Gai. 2022. Application of hydrocarbon-mercury superimposed halo method in red beds:A case study of the Woxi gold deposit, Hunan Province. Geophysical and Geochemical Exploration, 46(2): 323-336. doi: 10.11720/wtyht.2022.1138
Citation: CHEN Hai-Long, XIAO Qi-Peng, XU Zhi-Bin, YANG Hai-Yan, LIANG Ju-Hong, YIN Da-Gai. 2022. Application of hydrocarbon-mercury superimposed halo method in red beds:A case study of the Woxi gold deposit, Hunan Province. Geophysical and Geochemical Exploration, 46(2): 323-336. doi: 10.11720/wtyht.2022.1138

Application of hydrocarbon-mercury superimposed halo method in red beds:A case study of the Woxi gold deposit, Hunan Province

  • To further verify the feasibility of the hydrocarbon-mercury superimposed halo method in the coverage area of red beds in prospecting deep deposits, this study carried out area tests of hydrocarbon-mercury superimposed halo in 4.3 km2 of coverage area of Cretaceous red beds in the Hongyanxi ore block using a grid density of 160 m x 20 m. The following conclusions were drawn by summarizing the characteristics of the anomalies of metallogenic elements and hydrocarbon-mercury components in the soil in the red beds, including their superposition characteristics, field structures, patterns, spatial correspondence, and planar distribution patterns. ① There are deep-source and syngenetic superimposed fields in the soil geochemical field of red beds in the Hongyanxi ore block; ② Along the strikes of ore veins, syngeneic superimposed anomalies correspond to barren sections, while the deep-source superimposed anomalies correspond to ore sections. Along the dip directions of ore veins, the ore bodies under the control of paired bimodal anomaly mode occur in ore sections, while other ore bodies occur in barren sections; ③ Planarly, the distribution direction of zonal anomalies consisting of anomalies in the head and tail parts of the paired bimodal anomaly pattern is the pitch directions of orebodies. The superposition of different zonal anomalies indicates the occurrence of parallel blind veins in deep parts. These conclusions were verified in deep engineering, indicating ideal prediction results.
  • 加载中
  • [1] 赵阳, 汪明启, 张鹤. 土壤(土被)中后生异常与深穿透地球化学[J]. 物探与化探, 2021, 45(2):257-265.

    Google Scholar

    [2] Zhao Y, Wang M Q, Zhang H. Epigenetic anomalies and deep penetration geochemistry of soil (soil cover)[J]. Geophysical and Geochemical Exploration, 2021, 45(2): 257-265.

    Google Scholar

    [3] 陈远荣, 贾国相, 戴塔根. 论有机质与金属成矿和勘查[J]. 中国地质, 2002, 29(3):257-262.

    Google Scholar

    [4] Chen Y R, Jia G X, Dai T G. The role of organic material in metallic mineralization and its application in metal exploration[J]. Geology in China, 2002, 29(3): 257-262.

    Google Scholar

    [5] Saxby I D. 有机质在矿床成因中的重要意义:层控矿床与层状矿床(第二卷)[M].肖学军,译. 北京: 地质出版社, 1980.

    Google Scholar

    [6] Saxby I D. The significance of organic matter in the genesis of ore deposits:Stratabound and stratiform deposits (Volume Ⅱ;)[M]. Xiao X J, translate. Beijing: Geological Publishing House, 1980.

    Google Scholar

    [7] 李生郁, 徐丰孚. 轻烃与硫化物气体测量寻找金矿隐伏矿方法试验[J]. 物探与化探, 1997, 45(2):499-504.

    Google Scholar

    [8] Li S Y, Xu F F. The test of light hydrocarbon and sulfide gas measurement forconcealed gold deposit[J]. Geophysical and Geochemical Exploration, 1997, 45(2): 499-504.

    Google Scholar

    [9] 胡凯. 金矿床中的有机质及其成矿作用[J]. 矿物岩石地球化学通报, 1998, 17(2):71-75.

    Google Scholar

    [10] Hu K. Organic matter and its mineralization in gold deposits[J]. Bulletin of Minerals, Rocks, Geochemistry, 1998, 17(2): 71-75.

    Google Scholar

    [11] 陈远荣, 贾国相, 徐庆鸿. 气体集成快速定位预测隐伏矿新技术研究[M]. 北京: 地质出版社, 2003.

    Google Scholar

    [12] Chen Y R, Jia G X, Xu Q H. Study on new technique of gas integrated rapid location and prediction of concealed ore[M]. Beijing: Geological Publishing House, 2003.

    Google Scholar

    [13] 中国地球化学研究所. 有机地球化学论文集[M]. 北京: 科学出版社, 1986.

    Google Scholar

    [14] China Institute of Geochemistry. Papers on organic geochemistry[M]. Beijing: Science Press, 1986.

    Google Scholar

    [15] 陈远荣, 戴塔根, 贾国相, 等. 金属矿床有机烃气常见异常模式和成因机理研究[J]. 中国地质, 2001, 15(87):738-742.

    Google Scholar

    [16] Chen Y R, Dai T G, Jia G X, et al. The common anomaly pattern of organic hydrocarbon of metallic deposit and its mechanism[J]. Geology in China, 2001, 15(87): 738-742.

    Google Scholar

    [17] 陈远荣, 戴塔根, 庄晓蕊, 等. 烃汞气体组分垂向运移的主要控制因素[J]. 中国地质, 2001, 28(8):28-32.

    Google Scholar

    [18] Chen Y R, Dai T G, Zhuang X R, et al. Main controlling factors for vertical migration of hydrocarbons and mercury[J]. Chinese Geology, 2001, 28(8): 28-32.

    Google Scholar

    [19] 徐庆鸿, 陈远荣, 毛景文, 等. 有机烃在预测隐伏金矿床中的应用及其成因探索[J]. 地质论评, 2005, 51(5):105-112.

    Google Scholar

    [20] Xu Q H, Chen Y R, Mao J W, et al. Application for Hydrocarbon in prognosis buried gold deposits and implication for Genesis[J]. Geological Review, 2005, 51(5): 105-112.

    Google Scholar

    [21] 贾国相, 陈远荣, 姚锦其. 中国特色景观油气综合化探技术[M]. 北京: 石油工业出版社, 2002.

    Google Scholar

    [22] Jia G X, Chen Y R, Yao J Q. Comprehensive geochemical exploration technique of landscape oil and gas with Chinese characteristics[M]. Beijing: Petroleum Industry Press, 2002.

    Google Scholar

    [23] 陈海龙, 肖其鹏, 梁巨宏. 湖南沃溪金矿区及其外围烃汞叠加晕找矿方法的应用效果[J]. 物探与化探, 2021, 45(2):266-280.

    Google Scholar

    [24] Chen H L, Xiao Q P, Liang J H. The application of hydrocarbon and superimposed halo method to the Woxi gold deposit, Hunan Province[J]. Geophysical and Geochemical Exploration, 2021, 45(2): 266-280.

    Google Scholar

    [25] 彭南海. 湖南沅陵沃溪金-锑-钨矿床地质地球化学特征及成因研究[D]. 长沙: 中南大学, 2017.

    Google Scholar

    [26] Peng N H. Study on geological and geochemical characteristics and genesis of Woxi Au-Sb-Wdeposit Yuanling, Hunan province[D]. Changsha: Central South University, 2017.

    Google Scholar

    [27] 陈海龙, 杨晓弘, 何永淼, 等, 湖南沃溪金锑钨矿床成矿地质特征及多元信息找矿模式[M]. 长沙: 中南大学出版社, 2021.

    Google Scholar

    [28] Chen H L, Yang X H, He Y M, et al. Metallogenic geological characterics and multiple information prospecting model of Woxi Au-Sb-Wdeposit in Hunan province[M]. Changsha: Central South University Press, 2021.

    Google Scholar

    [29] 胡召齐, 朱光, 张必龙, 等. 雪峰隆起北部加里东事件的K-Ar年代学研究[J]. 地质论评, 2010, 56(4):490-500.

    Google Scholar

    [30] Hu Z Q, Zhu G, Zhang B L, et al. K-Ar Geochronology of the Caledonian Event in the Xuefeng Uplift[J]. Geological Review, 2010, 56(4): 490-500.

    Google Scholar

    [31] 金宠, 李三忠, 王岳军, 等. 雪峰山陆内复合构造系统印支—燕山期构造穿时递进特征[J]. 石油与天然气地质, 2009, 30(5):598-607.

    Google Scholar

    [32] Jin C, Li S Z, Wang Y J, et al. Diachronous and progressive deformation during the Indosinian-Yanshanian movements of the Xuefeng Mountainintracontinental composite tectonic system[J]. Oil & Gas Geology, 2009, 30(5): 598-607.

    Google Scholar

    [33] 马小双. 湘西雪峰中段金锑矿床流体包裹体及同位素特征研究[D]. 湘潭: 湖南科技大学, 2016.

    Google Scholar

    [34] Ma X S. Study on fluid inclusions and isotopic characteristics of the Middle Xuefeng gold-antimony deposit in Xiangxi[D]. Xiangtan: Hunan University of Science and Technology, 2016.

    Google Scholar

    [35] 彭建堂. 湖南雪峰地区金成矿演化机理探讨[J]. 大地构造与成矿学, 1999, 23(2):144-151.

    Google Scholar

    [36] Peng J T. Discussion on the evolution mechanism of gold mineralization in Xuefeng area, Hunan Province[J]. Geotectonica et Metallogenia, 1999, 23(2): 144-151.

    Google Scholar

    [37] 刘英俊, 孙承辕, 马东升. 江南金矿及其成矿作用地球化学背景[M]. 南京: 南京大学出版社, 1993.

    Google Scholar

    [38] Liu Y J, Sun C Y, Ma D S. Jiangnan gold deposit and its geochemical background of mineralization[M]. Nanjing: Nanjing University Press, 1993.

    Google Scholar

    [39] 邵靖帮, 王濮, 陈代璋. 湘西沃溪金锑钨矿床矿化蚀变带有机质特征初探[J]. 贵金属地质, 1996, 5(2):195-200.

    Google Scholar

    [40] Shao J B, Wang P, Chen D Z. Preliminary study on the organic characteristics of the mineralization alteration zone of the Woxi gold-antimony-tungsten deposit in Xiangxi[J]. Geology of Precious Metals, 1996, 5(2): 195-200.

    Google Scholar

    [41] 杜乐天. 地壳流体与地幔流体间的关系[J]. 地学前缘, 1996, 3(3/4):172-180.

    Google Scholar

    [42] Du L T. The relationship between crustal fluids and mantle fluids[J]. Earth Science Frontiers, 1996, 3(3/4):172-180.

    Google Scholar

    [43] 杜乐天. 烃碱地球化学原理[M]. 北京: 北京科技出版社, 1996.

    Google Scholar

    [44] Du L T. Principles of hydrocarbon alkali geochemistry[M]. Beijing: Beijing Science and Technology Press, 1996.

    Google Scholar

    [45] 杜乐天. 幔汁流体与软流层(体)地球化学[M]. 北京: 地质出版社, 1996.

    Google Scholar

    [46] Du L T. Mantle juice fluid and asthenosphere (body) geochemistry[M]. Beijing: Geological Publishing House, 1996.

    Google Scholar

    [47] 刘丛强, 黄智龙. 地幔流体及其成矿作用[M]. 北京: 地质出版社, 2004.

    Google Scholar

    [48] Liu C Q, Huang Z L. Mantle fluid and its mineralization[M]. Beijing: Geological Publishing House, 2004.

    Google Scholar

    [49] 毛景文, 张晓峰, 李荣华, 等著. 深部流体成矿系统[M]. 北京: 中国大地出版社, 2004.

    Google Scholar

    [50] Mao J W, Zhang X F, Li R H, et al. Deep fluid mineralization system[M]. Beijing: China Land Publishing House, 2004.

    Google Scholar

    [51] 刘丛强, 黄智龙, 李和平, 等. 地幔流体及其成矿作用[J]. 地学前缘, 2001, 8(4):231-243.

    Google Scholar

    [52] Liu C Q, Huang Z L, Li H P, et al. Mantle fluid and its mineralization[J]. Earth Science Frontiers, 2001, 8(4): 231-243.

    Google Scholar

    [53] 路风香. 深部地幔及深部流体[J]. 地学前缘, 1996, 3(4):231-243.

    Google Scholar

    [54] Lu F X. Deep mantle and deep fluids[J]. Earth Science Frontiers, 1996, 3(4): 231-243.

    Google Scholar

    [55] 曹荣龙, 朱华寿. 地幔流体与成矿作用[J]. 地球科学进展, 1995, 10(4):324-329.

    Google Scholar

    [56] Cao R L, Zhu H S. Mantle fluids and mineralization[J]. Advances in Earth Science, 1995, 10(4): 324-329.

    Google Scholar

    [57] 刘英俊, 曹励民, 李兆麟, 等. 元素地球化学[M]. 北京: 科学出版社, 1984.

    Google Scholar

    [58] Liu Y J, Cao L M, Li Z L, et al. Elemental geochemistry[M]. Beijing: Science Press, 1984.

    Google Scholar

    [59] Nan J B, King H E, Delen G, et al. The nanogeochemistry of abiotic carbonaceous matter in serpentinites from the Yap Trench, western Pacific Ocean[J]. Geology, 2021, 49(3): 330-334.

    Google Scholar

    [60] 梁婷, 高景刚, 朱文戈. 成矿流体类型及研究方法综述[J]. 西安文理学院学报:自然科学版, 2005, 8(4):36-42.

    Google Scholar

    [61] Liang T, Gao J G, Zhu W G. A summary on the types of ore-forming fluids and research methods[J]. Journal of Xi’an University:Natural Science Edition, 2005, 8(4): 36-42.

    Google Scholar

    [62] 张文淮, 张志坚, 伍刚. 成矿流体及成矿机制[J]. 地学前缘, 1996, 3(3/4):245-252.

    Google Scholar

    [63] Zhang W H, Zhang Z J, Wu G. Ore-forming fluid and mineralization mechanism[J]. Earth Science Frontiers, 1996, 3(3/4):245-252.

    Google Scholar

    [64] 涂修元. 天然气和表土中汞蒸气含量及分布特征[J]. 地球化学, 1992, 3(9):294-303

    Google Scholar

    [65] Tu X Y. Mercury vapor content and distribution characteristics in natural gas and topsoil[J]. Geochemistry, 1992, 3(9): 294-303.

    Google Scholar

    [66] 孟宪伟, 窦明晓, 余先川. 地球化学场分解的理论与方法[J]. 地球科学进展, 1994, 6(6):59-64.

    Google Scholar

    [67] Meng X W, Dou M X, Yu X C. The theories and methods on the dispersion of geochemical field[J]. Advance in Earth Sciences, 1994, 6(6): 59-64.

    Google Scholar

    [68] 戚长谋. 元素地球化学分类探讨[J]. 长春科技大学学报, 1997, 21(4):361-365.

    Google Scholar

    [69] Qi C M. A discussion for geochemical classification of elements[J]. Journal of Changchun University of Earth Science, 1997, 21(4): 361-365.

    Google Scholar

    [70] 吴锡生. 化探数据处理方法[M]. 北京: 冶金出版社, 2008.

    Google Scholar

    [71] Wu X S. Data processing method of geochemical exploration[M]. Beijing: Metallurgical Publishing House, 2008.

    Google Scholar

    [72] 於崇文. 数学地质的方法与应用[M]. 北京: 冶金出版社, 1995.

    Google Scholar

    [73] Yu C W. Methods and applications of mathematical geology[M]. Beijing: Metallurgical Press, 1995.

    Google Scholar

    [74] Bolviken B, Stokke P R, Feder J, et al. The fractal nature of geochemical landscapes[J]. Geochemical Exploration, 1992, 43: 91-109.

    Google Scholar

    [75] 成秋明. 多重分形与地质统计学方法用于勘查地球化学异常空间结构和奇异性分析[J]. 中国地质大学学报, 2001, 26(2):161-166.

    Google Scholar

    [76] Cheng Q M. Multifractal and geostatistics methods used to explore the spatial structure and singularity of geochemical anomalies[J]. Journal of China University of Geosciences, 2001, 26(2): 161-166.[40] 成秋明. 空间自相似性与地球物理和地球化学场的分解方法[J]. 地球物理学进展, 2001, 16(2):9-17.[40] Cheng Q M. Spatial self-similarity and the decomposition method of geophysical and geochemical fields[J]. Progress in Geophysics, 2001, 16(2): 9-17.[41] 张哲儒, 毛华海. 分形理论与成矿作用[J]. 地学前缘, 2000, 7(1):195-204.[41] Zhang Z R, Mao H H. Fractal theory and mineralization[J]. Frontiers of Earth Science, 2000, 7(1): 195-204.[42] 谢淑云, 鲍征宇. 地球化学场的连续多重分形模式[J]. 地球化学, 2002, 21(2):191-200.

    Google Scholar

    [42] Xie S Y, Bao Z Y. Continuous multifractal model of geochemical field[J]. Geochemistry, 2002, 21(2): 191-200.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(970) PDF downloads(114) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint