China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2022 Vol. 46, No. 6
Article Contents

Liang Shuai, Dai Hui-Min, Zhao Jun, Liu Guo-Dong, Liu Kai, Zhai Fu-Rong, Han Xiao-Meng, Wei Ming-Hui, Zhang Zhe-Huan. 2022. Distribution characteristics, migration transformation and influencing factors of Ge in soil-rice system in Shuangyang River Basin, Heilongjiang Province. Geophysical and Geochemical Exploration, 46(6): 1555-1564. doi: 10.11720/wtyht.2022.0084
Citation: Liang Shuai, Dai Hui-Min, Zhao Jun, Liu Guo-Dong, Liu Kai, Zhai Fu-Rong, Han Xiao-Meng, Wei Ming-Hui, Zhang Zhe-Huan. 2022. Distribution characteristics, migration transformation and influencing factors of Ge in soil-rice system in Shuangyang River Basin, Heilongjiang Province. Geophysical and Geochemical Exploration, 46(6): 1555-1564. doi: 10.11720/wtyht.2022.0084

Distribution characteristics, migration transformation and influencing factors of Ge in soil-rice system in Shuangyang River Basin, Heilongjiang Province

  • Soil germanium natural endowment, genesis sources, ecological and environmental effects and human health assessment are important research directions in the ecological geology of black soil, and the quantitative study of germanium distribution characteristics, migration transformation and influencing factors in the soil-rice human system is of great significance to the development of germanium-rich agricultural products and human health in black soil areas. Based on the 1∶50,000 ecogeochemical survey of land quality in the Shuangyang River Basin, we obtained germanium and other elemental data from multi-media such as soil-forming parent material, top soil, rice seeds, root soil and human hair, and used GIS and SPSS software to statistically analyze the data. The results showed that the germanium content of the top soil ranged from 0.996×10-6 to 1.626×10-6, with an average value of 1.326×10-6, and the high value areas were mainly distributed in the northwest and central south of the north side of Shuangyang River; 70.55 km2 and 166.9 km2 of germanium-rich and germanium-sufficient arable land were delineated, which had a greater potential for developing green germanium-rich and selenium-rich agricultural products. Soil-forming parent material is the main factor affecting the germanium content of topsoil, and soil type and land use type have less influence; soil environment with acidic and organic matter deficiency may be more favorable for germanium enrichment. The germanium content of rice seeds ranged from 0.24×10-6 to 3.40×10-6, with a mean value of 1.59×10-6, and the samples meeting the moderate and strong uptake criteria accounted for 40% and 60%, respectively, and were at significantly germanium-rich levels. The germanium uptake coefficient (Ax)was significantly negatively correlated with the root soil germanium content (p=-0.34*), indicating that low concentrations of soil germanium have a promoting effect on rice growth and development, and high concentrations of germanium have an inhibitory or toxic effect on rice growth; it was positively correlated with the root soil pH (p=0.40), indicating that the migration and transformation ability of rice to germanium elements gradually increases with the increase of soil pH. Adult hair germanium levels were at normal healthy levels, but germanium levels in immature female hair significantly exceeded the reference range, and more detailed studies are needed for human health assessment.
  • 加载中
  • [1] Murnane K J, Stallard R F. Germanium and silicon in rivers of the Orinoco drainage basin[J]. Nature, 1999, 344(19):749-752.

    Google Scholar

    [2] Bernstein L R. Germanium geochemistry and mineralogy[J]. Geuchimica et Cosmochimica Acta, 2018, 49:2409-2422.

    Google Scholar

    [3] 中国科学院地球化学研究所. 高等地球化学[M]. 北京: 科学出版社, 1998:38.

    Google Scholar

    [4] Institute of Geochemistry, Chinese Academy of Sciences. Advanced geochemistry[M]. Beijing: Science Press, 1998: 38.

    Google Scholar

    [5] 中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990.

    Google Scholar

    [6] China Environmental Monitoring Station. Background value of soil elements in China[M]. Beijing: China Environmental Science Press, 1990.

    Google Scholar

    [7] 鄢明才, 顾铁新, 迟清华, 等. 中国土壤化学元素丰度与表生地球化学特征[J]. 物探与化探, 1997, 21(3):161-167.

    Google Scholar

    [8] Yan M C, Gu T X, Chi Q H, et al. Abundance of chemical elements of soils in china and supergenesis geochemistry characteristics[J]. Geophysical and Geochemical Exploration, 1997, 21(3): 161-167.

    Google Scholar

    [9] 杨利, 黄仁录. 锗与人体健康[J]. 微量元素与健康研究, 2005, 22(3):60-61.

    Google Scholar

    [10] Yang L, Huang R L. Germanium and human health[J]. Research on Trace Elements and Health, 2005, 22(3): 60-61.

    Google Scholar

    [11] 李景岩. 有机锗与人体健康[J]. 现代预防医学, 2007, 34(13):2465-2467.

    Google Scholar

    [12] Li J Y. Organic germanium and human health[J]. Modern Preventive Medicine, 2007, 34(13): 2465-2467.

    Google Scholar

    [13] 赵君, 饶竹, 王鹏, 等. 黑龙江讷河市富锗土壤地球化学特征及影响因素浅析[J]. 岩矿测试, 2022, 41(4):642-651.

    Google Scholar

    [14] Zhao J, Rao Z, Wang P, et al. Geochemical characteristics and influencing factors of germanium-enriched soils in Nehe City, Heilongjiang Province[J]. Rock and Mineral Analysis, 2022, 41(4) :642-651.

    Google Scholar

    [15] 夏伟, 段碧辉, 王天一, 等. 恩施州咸丰县土壤—水稻系统锗元素迁移转化及影响因素[J]. 西南农业学报, 2021, 34(12):2748-2756.

    Google Scholar

    [16] Xia W, Duan B H, Wang T Y, et al. Germanium transfer and its influencing factors in soil-rice system in Xianfeng County,Enshi Prefecture[J]. Southwest Agricultural Journal, 2021, 34(12):2748-2756.

    Google Scholar

    [17] 刘道荣, 周漪, 侯建国, 等. 大田生产条件下锗在土壤-水稻系统中的迁移累积[J]. 中国土壤与肥料, 2020(3):133-137.

    Google Scholar

    [18] Liu D R, Zhou Y, Hou J G, et al. Translocation and accumulation of germanium in soil-rice system under field conditions[J]. China Soil and Fertilizer, 2020(3):133-137.

    Google Scholar

    [19] 余飞, 贾中民, 李武斌, 等. 锗在土壤—水稻系统的迁移累积及其影响因素[J]. 三峡生态环境监测, 2018, 3(1):66-74.

    Google Scholar

    [20] Yu F, Jia Z M, Li W B, et al. Translocation and accumulation of germanium in paddy soil-rice plant system[J]. Three Gorges Ecological Environment Monitoring, 2018, 3(1): 66-74.

    Google Scholar

    [21] 段轶仁, 杨忠芳, 杨琼, 等. 广西北部湾地区土壤锗分布特征及其影响因素及其生态环境评价[J]. 中国地质, 2020, 47(6):1826-1837.

    Google Scholar

    [22] Duan Y R, Yang Z F, Yang Q, et al. The distribution, influencing factors and ecological environment evaluation of soil germanium in Beibu Gulf of Guangxi Zhuang Autonomous Region[J]. Geology in China, 2020, 47(6):1826-1837.

    Google Scholar

    [23] 梁帅, 朱建新, 戴慧敏, 等. 黑龙江拜泉地区硒元素在土壤原植物系统中的迁移富集规律[J]. 地质与资源, 2021, 30(4):456-465.

    Google Scholar

    [24] Liang S, Zhu J X, Dai H M, et al. Migration and enrichment of selenium in soil-plant system in baiquan area,heilongjiang province[J]. Geology and Resources, 2021, 30(4):456-465.

    Google Scholar

    [25] 汤彦辉, 程岩, 孙玉龙, 等. 黑龙江省拜泉县耕地地力评价[M]. 北京: 中国农业科学技术出版社, 2016.

    Google Scholar

    [26] Tang Y H, Cheng Y, Sun Y L, et al. Evaluation of cultivated land in Baiquan County, Heilongjiang Province[M]. Beijing: China Agricultural Science and Technology Press, 2016.

    Google Scholar

    [27] 李光辉, 崔玉军, 张立, 等. 富锗土壤评价技术要求[M]. 哈尔滨: 黑龙江省市场监督管理局, 2019.

    Google Scholar

    [28] Li G H, Cui Y J, Zhang L, et al. Technical requirements for germanium-rich soil evaluation[M]. Harbin: Heilongjiang Provincial Administration for Market Regulation, 2019.

    Google Scholar

    [29] 余飞, 张永文, 王宇, 等. 重庆典型农业区富锗土壤分布特征及影响因素[J]. 地质与资源, 2021, 30(5):609-616.

    Google Scholar

    [30] Yu F, Zhang Y W, Wang Y, et al. Distribution characteristics and influencing factors of germanium-rich soil in typical agricultural area of chongqing municipality[J]. Geology and Resources, 2021, 30(5):609-616.

    Google Scholar

    [31] 刘道荣. 浙江常山县表层土壤锗地球化学特征及影响因素[J]. 现代地质, 2020, 34(1):97-104.

    Google Scholar

    [32] Liu D R. Geochemical characteristics and influencing factors of germanium in surface soil of Changshan County, Zhejiang Province[J]. Modern Geology, 2020, 34(1): 97-104.

    Google Scholar

    [33] 游桂芝, 鲍大忠, 李丕鹏. 贵州安龙县耕地土壤富锗含量特征及成因探讨[J]. 贵州大学学报:自然科学版, 2020, 37(5):35-39.

    Google Scholar

    [34] You G Z, Bao D Z, Li P P. Germanium content characteristics and cause of germanium-rich soil in Anlong County,Guizhou Province[J]. Journal of Guizhou University:Natural Science Edition, 2020, 37(5): 35-39.

    Google Scholar

    [35] 夏伟, 段碧辉, 王天一, 等. 恩施州咸丰县土壤—水稻系统锗元素迁移转化及影响因素[J]. 西南农业学报, 2021, 34(12):2748-2756.

    Google Scholar

    [36] Xia W, Duan B H, Wang T Y, et al. Germanium transfer and its influencing factors in soil-rice system in Xianfeng County,Enshi Prefecture[J]. Southwest Agricultural Journal, 2021, 34(12): 2748-2756.

    Google Scholar

    [37] Adriano D C, Chino M. Biogeochemical aspects of lead, germanium and tin[J]. Main Group Metal Chemistry, 1994, 17:1-4.

    Google Scholar

    [38] 代杰瑞, 庞绪贵, 喻超, 等. 山东省东部地区土壤地球化学特征及污染评价[J]. 中国地质, 2011, 38(5):1387-1395.

    Google Scholar

    [39] Dai J R, Pang X G, Yu C, et al. Geochemical features and contamination assessment of soil elements in east Shandong Province[J]. China Geology, 2011, 38(5): 1387-1395.

    Google Scholar

    [40] Kurtz A C, Derry L A, Chadwick O A. Germanium-silicon fractionation in the weathering environment[J]. Geochimica et Cosmochimica Acta, 2002, 66(9):1525-1537.

    Google Scholar

    [41] Lugolobi F, Kurtz A C, Derry L A. Germanium-silicon fractionation in a tropical, granitic weathering environment[J]. Geochimica et Cosmochimica Acta, 2010, 4(74): 1294-1308.

    Google Scholar

    [42] Scribner A M, Kurtz A C, Chadwick O A. Germanium sequestration by soil: Targeting the roles of secondary clays and Fe-oxyhydroxides[J]. Earth & Planetary Science Letters, 2006,3- 4(243): 760-770.

    Google Scholar

    [43] Pokrovsky O S, Galy A, Schott J, et al. Germanium isotope fractionation during Ge adsorption on goethiteand its coprecipitation with Fe oxy(hydr)oxides[J]. Geochimica et Cosmochimica Acta, 2014, 5(131): 138-149.

    Google Scholar

    [44] 李明堂. 锗在土壤—水稻体系内迁移和积累规律的研究[D]. 长春: 吉林农业大学, 2002.

    Google Scholar

    [45] Li M T. Study on the migration and accumulation of germanium in soil-rice system[D]. Changchun: Jilin Agricultural University, 2002.

    Google Scholar

    [46] Yang J T, Jwang J F, Liao X Y, et al. Chain modeling for the biogeochemical nexus of cadmium in soil-rice-human health system[J]. Environment International, 2022, 167:107424-407433.

    Google Scholar

    [47] 李明堂, 张月, 赵晓松. 锗在土壤—水稻系统内的迁移和积累规律[J]. 农业环境科学学报, 2007, 26(1):126-129.

    Google Scholar

    [48] Li M T, Zhang Y, Zhao X S. Migration and accumulation of germanium in soil-rice system[J]. Journal of Agricultural and Environmental Sciences, 2007, 26(1): 126-129.

    Google Scholar

    [49] Kiyoshi T, Ko-Ling Y. Soil science and plant nutrition[J]. Soil Science and Plant Nutrition, 1972, 18(5):173-178.

    Google Scholar

    [50] Oliver W, Balázs S, Christin M, et al. Germanium in the soil-plant system:A review[J]. Environmental Science and Pollution Research, 2018, 25(32): 31938-31956.

    Google Scholar

    [51] Philippe N, Anna L, Clemens R, et al. Gemas:Source, distribution patterns and geochemical behavior of Ge in agricultural and grazing land soils at European Continental Scale[J]. Applied Geochemistry, 2016, 72:113-124.

    Google Scholar

    [52] 李桂珠, 赵丽丽. 金属锗在水稻体内的植物化研究[J]. 安徽农业科学, 2008, 36(22):9434-9435.

    Google Scholar

    [53] Li G Z, Zhao L L. Phytochemical study of metal germanium in rice[J]. Anhui Agricultural Sciences, 2008, 36(22): 9434-9435.

    Google Scholar

    [54] Fan B L, Tang M L, Yao L Y, et al. Germanium fractions in typical paddy soil and its interaction with humic substances[J]. Environmental Science and Pollution Research, 2020, 28:9670-9681.

    Google Scholar

    [55] 李青仁, 李会, 岳春月, 等. 微量元素锗与人体健康[J]. 世界元素医学, 2008, 15(3):21-23.

    Google Scholar

    [56] Li Q R, Li H, Yue C Y, et al. Trace element germanium and human health[J]. World Elemental Medicine, 2008, 15(3): 21-23.

    Google Scholar

    [57] T/GDWJ 003—2020人体头发中38种微量元素健康评价阈值[S]. 广东省卫生经济学会, 2020.

    Google Scholar

    [58] T/GDWJ 003—2020 Thresholds for health evaluation of 38 trace elements in human hair[S]. Guangdong Health Economics Association, 2020.

    Google Scholar

    [59] 廖昌园, 王春红, 陈彬. 营养与健康[M]. 北京: 新华出版社, 2003:104.

    Google Scholar

    [60] Liao C Y, Wang C H, Chen B. Nutrition and health[M]. Beijing: Xinhua Press, 2003: 104.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(683) PDF downloads(68) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint