China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2022 Vol. 46, No. 6
Article Contents

ZHANG Jian-Wei, YANG Zhuo-Jing, WANG Xin-Jie, LI Sheng-Tao, ZHAO Yu-Jun. 2022. Design and application of the ultrasonic imaging logging system for deep carbonate geothermal reservoirs. Geophysical and Geochemical Exploration, 46(6): 1500-1506. doi: 10.11720/wtyht.2022.0061
Citation: ZHANG Jian-Wei, YANG Zhuo-Jing, WANG Xin-Jie, LI Sheng-Tao, ZHAO Yu-Jun. 2022. Design and application of the ultrasonic imaging logging system for deep carbonate geothermal reservoirs. Geophysical and Geochemical Exploration, 46(6): 1500-1506. doi: 10.11720/wtyht.2022.0061

Design and application of the ultrasonic imaging logging system for deep carbonate geothermal reservoirs

  • Geothermal resources are widely distributed in the Beijing-Tianjin-Hebei region and the Xiong'an New Area and are mainly characterized by deep carbonate geothermal reservoirs. To achieve stable and increased production of geothermal reservoirs, it is effective to detect and evaluate the fracture parameters of reservoirs and analyze the distribution patterns of tectonic fractures in underground rock masses using the ultrasonic imaging logging technique. Targeting the high-temperature and high-pressure environment of deep carbonate geothermal reservoirs, this study developed an ultrasonic imaging logging system, which can be used under the conditions of well depth greater than 4,000 m, well diameter of 150~500 mm, temperature greater than 110℃, continuous operating time greater than 12 h, and pixels per meter of a geological well greater than 50,000. The equipment of this ultrasonic imaging logging system has been tested in well D22 in Xiong'an New Area. The test results show that the developed ultrasonic imaging logging system has a clear imaging effect and high identification degree of fractures and that its various performance indicators are comparable to those of advanced foreign equipment. Therefore, this system can provide an efficient technical method for identifying fractures and fractured zones and analyzing the occurrence of deep carbonate geothermal reservoirs.
  • 加载中
  • [1] 吴爱民, 马峰, 王贵玲, 等. 雄安新区深部岩溶热储探测与高产能地热井参数研究[J]. 地球学报, 2018, 39(5): 523-532.

    Google Scholar

    [2] Wu A M, Ma F, Wang G L, et al. A study of deep-seated Karst geothermal reservoir exploration and huge capacity geothermal well parameters in Xiongan New Area[J]. Acta Geoscientica Sinica, 2018, 39(5): 523-532.

    Google Scholar

    [3] 白青清, 田林, 吕欣萍, 等. 容城—牛驼镇凸起碳酸盐岩层地热开发小微断裂探究[J]. 城市建设理论研究:电子版, 2020 (11): 39-40.

    Google Scholar

    [4] Bai Q Q, Tian L, Lu X P, et al. Exploration of small and micro fracture of geothermal development of raised carbonate layer in Rongcheng-Niutuo Town[J]. Theoretical Study on Urban Construction:Electronic Edition, 2020 (11): 39-40.

    Google Scholar

    [5] 刘东明, 林振洲, 高文利, 等. 藏南泽当科学钻探ZDSD-1孔超声成像测井解释[J]. 物探与化探, 2017, 41(4):672-677.

    Google Scholar

    [6] Liu D M, Lin Z Z, Gao W L, et al. Interpretation of ultrasonic imaging logging data obtained in Drill Hole ZDSD-1 of the Zedang Scientific Drilling in Xizang[J]. Geophysical and Geochemical Exploration, 2017, 41(4):672-677.

    Google Scholar

    [7] 涂善波, 郭良春, 姜文龙. 基于成像测井技术的地下岩体裂隙分布规律预测研究[J]. 河南水利与南水北调, 2019, 48(1):83-85.

    Google Scholar

    [8] Tu S B, Guo L C, Jiang W L. Study on crack distribution of underground rock mass based on imaging logging[J]. Henan Water Resources and South-to-North Water Diversion, 2019, 48(1):83-85.

    Google Scholar

    [9] 朱文娟. 成像测井资料在裂缝识别中的应用[J]. 石油仪器, 2009, 23(3):45-47,101.

    Google Scholar

    [10] Zhu W J. Application of imaging logging data in crack identification[J]. Petroleum Tubular Goods & Instruments, 2009, 23(3):45-47,101.

    Google Scholar

    [11] 夏琼. 基于超声波技术的井壁成像系统设计[J]. 化工管理, 2018(24):65.

    Google Scholar

    [12] Xia Q. Design of well wall imaging system based on ultrasonic technology[J]. Chemical Enterprise Management, 2018(24):65.

    Google Scholar

    [13] 付青青. 超声成像测井图像增强和复原方法研究[D]. 荆州: 长江大学, 2020.

    Google Scholar

    [14] Fu Q Q. Research of enhancement and restoration method for ultrasonic logging images[D]. Jingzhou: Changjiang University, 2020.

    Google Scholar

    [15] 冯延强, 乔宝强, 焦仓文, 等. CS404小口径超声成像测井探管研制[J]. 铀矿地质, 2020, 36(1):46-51.

    Google Scholar

    [16] Feng Y Q, Qiao B Q, Jiao C W, et al. CS404 development of small caliber ultrasonic imaging logging tube[J]. Uranium Geology, 2020, 36(1):46-51.

    Google Scholar

    [17] 占志鹏. 井周超声成像仪主控系统设计[D]. 成都: 电子科技大学, 2020.

    Google Scholar

    [18] Zhan Z P. Design of main control system for circumferential borehole ultrasonic imaging tool[D]. Chengdu: University of Electronic Science and Technology of China, 2020.

    Google Scholar

    [19] 方志强, 付桂翠, 高泽溪. 电子设备热分析软件应用研究[J]. 北京航空航天大学学报, 2003(8):737-740.

    Google Scholar

    [20] Fang Z Q, Fu G C, Gao Z X. Application research on thermal analysis software of electronic systems[J]. Journal of Beijing University of Aeronautics and Astronautics, 2003(8):737-740.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(608) PDF downloads(100) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint