| [1] |
张一鹤, 杨泽, 戴慧敏, 等. 穆棱河—兴凯湖平原土地质量地球化学评价[J]. 地质与资源, 2021, 30(1):62-70.
Google Scholar
|
| [2] |
Zhang Y H, Yang Z, Dai H M, et al. Geochemical evaluation of land quality in Muling River-Xingkai Lake Plain[J]. Geology and Resources, 2021, 30(1):62-70.
Google Scholar
|
| [3] |
刘家福, 马帅, 李帅, 等. 1982—2016年东北黑土区植被NDVI动态及其对气候变化的响应[J]. 生态学报, 2018, 38(21):7647-7657.
Google Scholar
|
| [4] |
Liu J F, Ma S, Li S, et al. Changes in vegetation NDVI from 1982 to 2016 and its responses to climate change in the black-soil area of Northeast China[J]. Acta Ecologica Sinica, 2018, 38(21):7647-7657.
Google Scholar
|
| [5] |
李发鹏, 李景玉, 徐宗学. 东北黑土区土壤退化及水土流失研究现状[J]. 水土保持研究, 2006, 13(3):50-54.
Google Scholar
|
| [6] |
Li F P, Li J Y, Xu Z X. The status quo of black soil degradation and water and soil loss in Northeast China[J]. Research of Soil and Water Conservation, 2006, 13(3):50-54.
Google Scholar
|
| [7] |
徐晓斌, 王清. 我国黑土退化研究现状与展望[J]. 地球与环境, 2005, 33(S1):588-592.
Google Scholar
|
| [8] |
Xu X B, Wang Q. The current status and prospeis of research in black earth degradation in northeast China[J]. Earth and Environment, 2005, 33(S1):588-592.
Google Scholar
|
| [9] |
李忠佩, 吴大付. 红壤水稻土有机碳库的平衡值确定及固碳潜力分析[J]. 土壤学报, 2006, 43(1):46-52.
Google Scholar
|
| [10] |
Li Z P, Wu D F. Organic C content at steady state and potential of C sequestration of paddy soils in subtropical China[J]. Acta Pedologica Sinica, 2006, 43(1):46-52.
Google Scholar
|
| [11] |
胡延斌, 肖国举, 仇正跻, 等. 西北半干旱区农田土壤有机碳和全氮分布特征及其对地膜玉米产量的影响[J]. 水土保持研究, 2021, 28(1):58-64,403.
Google Scholar
|
| [12] |
Hu Y B, Xiao G J, Qiu Z J, et al. Distribution characteristics of soil organic carbon and total nitrogen and its influence on film mulched maize in farmland in northwest semiarid region[J]. Research of Soil and Water Conservation, 2021, 28(1):58-64,403.
Google Scholar
|
| [13] |
张世文, 黄元仿, 苑小勇, 等. 龚关县域尺度表层土壤质地空间变异与因素分析[J]. 中国农业科学, 2011, 44(6):1154-1164.
Google Scholar
|
| [14] |
Zhang S W, Huang Y F, Yuan X Y, et al. The spatial variability and factor analyses of top soil texture on a county scale[J]. Scientia Agricultura Sinica, 2011, 44 (6):1154-1164.
Google Scholar
|
| [15] |
Wiesmeier M, Hübner R, Barthold F, et al.Amount, distribution and driving factors of soil organic carbon and nitrogen in cropland and grassland soils of southeast Germany (Bavaria)[J]. Agriculture,Ecosystems and Environment, 2013, 176:39-52.
Google Scholar
|
| [16] |
Huang B, Sun W X, Zhao Y C, et al. Temporal and spatial variability of soil organic matter and total nitrogen in an agricultural ecosystem as affected by farming practices[J]. Geoderma, 2007, 139:336-345.
Google Scholar
|
| [17] |
王志齐, 杜兰兰, 赵慢, 等. 黄土区不同退耕方式下土壤碳氮的差异及其影响因素[J]. 应用生态学报, 2016, 27(3):716-722.
Google Scholar
|
| [18] |
Wang Z Q, Du L L, Zhao M, et al. Differences in soil organic carbon and total nitrogen and their impact factors under different restoration patterns in the Loess Plateau[J]. Chinese Journal of Applied Ecology, 2016, 27(3):716-722.
Google Scholar
|
| [19] |
宋小艳, 王长庭, 胡雷, 等. 若尔盖退化高寒草甸土壤团聚体结合有机碳变化[J]. 生态学报, 2022, 42(4):1538-1548.
Google Scholar
|
| [20] |
Song X Y, Wang C T, Hu L, et al. Changes in soil aggregate-associated organic carbon of degraded alpine meadow in the Zoige Plateau[J]. Acta Ecologica Sinica, 2022, 42(4):1538-1548.
Google Scholar
|
| [21] |
范如芹, 梁爱珍, 杨学明, 等. 耕作方式对黑土团聚体含量及特征的影响[J]. 中国农业科学, 2010, 43(18):3767-3775.
Google Scholar
|
| [22] |
Fan R Q, Liang A Z, Yang X M, et al. Effects of tillage on soil aggregates in black soils in Northeast China[J]. Scientia Agricultura Sinica, 2010, 43(18):3767-3775.
Google Scholar
|
| [23] |
张玉铭, 毛任钊, 胡春胜, 等. 华北太行山前平原农田土壤养分的空间变异性研究[J]. 应用生态学报, 2004, 15(11):2049-2054.
Google Scholar
|
| [24] |
Zhang Y M, Mao R Z, Hu C S, et al. Spatial variability of farmland soil nutrients at Taihang piedmont[J]. Chinese Journal of Applied Ecology, 2004, 15(11):2049-2054.
Google Scholar
|
| [25] |
孙淑梅, 张连志, 闫冬. 吉林省德惠—农安地区土地质量地球化学评估[J]. 现代地质, 2008, 22(6):998-1002.
Google Scholar
|
| [26] |
Sun S M, Zhang L Z, Yan D. Experimental study on method and technique of land quality geochemical assessment[J]. Geoscience, 2008, 22(6):998-1002.
Google Scholar
|
| [27] |
罗由林, 李启权, 王昌全, 等. 川中丘陵县域土壤碳氮比空间变异特征及其影响因素[J]. 应用生态学报, 2015, 26(1):177-185.
Google Scholar
|
| [28] |
Luo Y L, Li Q Q, Wang C Q, et al. Spatial variability of soil C/N ratio and its influence factors at a county scale in hilly area of Mid-Sichuan Basin,Southwest China[J]. Chinese Journal of Applied Ecology, 2015, 26(1):177-185.
Google Scholar
|
| [29] |
Sanchez P A, Ahamed S. Environmental science:Digital soil map of the world[J]. Science, 2009, 325(5941):680.
Google Scholar
|
| [30] |
Ustin S L, Roberts D A, Pinzón J, et al. Estimating canopy water content of chaparral shrubs using optical methods[J]. Remote Sensing of Environment, 1998, 65(3):280-291.
Google Scholar
|
| [31] |
刘国栋, 戴慧敏, 杨泽, 等. 三江平原土壤碳库时空变化和影响因素研究[J]. 现代地质, 2021, 35(2):443-454.
Google Scholar
|
| [32] |
Liu G D, Dai H M, Yang Z, et al. Temporal and spatial changes of soil carbon pool and its influencing factors in the Sanjiang Plain[J]. Geoscience, 2021, 35(2):443-454.
Google Scholar
|
| [33] |
赵明松, 张甘霖, 王德彩, 等. 徐淮黄泛平原土壤有机质空间变异特征及主控因素分析[J]. 土壤学报, 2013, 50(1):1-11.
Google Scholar
|
| [34] |
Zhao M S, Zhang G L, Wang D C, et al. Spatial variability of soil organic matter and its dominating factors in Xu-Huai alluvial plain[J]. Acta Pedologica Sinica, 2013, 50(1):1-10.
Google Scholar
|
| [35] |
顾成军, 史学正, 于东升, 等. 省域土壤有机碳空间分布的主控因子——土壤类型与土地利用比较[J]. 土壤学报, 2013, 50(3):425-432.
Google Scholar
|
| [36] |
Gu C J, Shi X Z, Yu D S, et al. Main factor controlling SOC spatial distribu tion at the province scale as affected by soil type and land use[J]. Acta Pedologica Sinica, 2013, 50(3):425-432.
Google Scholar
|
| [37] |
Robin G, Viacheslav I, Adamchuk. Precision agriculture and food security[J]. Science, 2010, 327(5967):828-831.
Google Scholar
|
| [38] |
Deng Q, Cheng X L, Yang Y H, et al. Carbon-nitrogen interactions during afforestation in central China[J]. Soil Biology and Biochemistry, 2014, 69:119-122.
Google Scholar
|
| [39] |
Nie X J, Zhang H B, Su Y Y. Soil carbon and nitrogen fraction dynamics affected by tillage erosion[J]. Scientific Reports, 2019, 9(1):23.
Google Scholar
|
| [40] |
Sourdille P, Singh S, Cadalen T, et al. Microsatellite-based deletion bin system for the establishment of geneticphysical map relationships in wheat (Triticum aestivum L.)[J]. Functional & Integrative Genomics, 2004, 4(1):12-25.
Google Scholar
|
| [41] |
Rossel R, Webster R. Predicting soil properties from the Australian soil visible-nearinfrared spectroscopic database[J]. European Journal of Soil Science, 2012, 63(6):848-860.
Google Scholar
|