China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2022 Vol. 46, No. 5
Article Contents

FANG Na-Na, YANG Ze, LIU Guo-Dong, DAI Hui-Min, LIU Kai. 2022. Spatial heterogeneity and influencing factors of the ecological stoichiometry of soil nitrogen and phosphorus in the Jiansanjiang area. Geophysical and Geochemical Exploration, 46(5): 1121-1131. doi: 10.11720/wtyht.2022.0039
Citation: FANG Na-Na, YANG Ze, LIU Guo-Dong, DAI Hui-Min, LIU Kai. 2022. Spatial heterogeneity and influencing factors of the ecological stoichiometry of soil nitrogen and phosphorus in the Jiansanjiang area. Geophysical and Geochemical Exploration, 46(5): 1121-1131. doi: 10.11720/wtyht.2022.0039

Spatial heterogeneity and influencing factors of the ecological stoichiometry of soil nitrogen and phosphorus in the Jiansanjiang area

  • The total nitrogen (TN), total phosphorus (TP), and nitrogen/phosphorus ratio (N/P) of soil are important indicators of soil fertility and quality. The study of their spatial heterogeneity is of great significance for the formulation of policies concerning soil nutrient management and ecological environment monitoring. Using methods such as geostatistical analysis and geographic information system (GIS), this study analyzed the spatial variation and influencing factors for the ecological stoichiometry of nitrogen and phosphorus in the surface soil (depth: 0~20 cm) of the Jiansanjiang area through soil sampling and laboratory tests. The results are as follows. The soil in the study area has average TN, TP, and N/P of 2.49×10-3, 0.81×10-3, and 3.20, respectively. The TN and N/P of the soil have high spatial autocorrelations, while the TP of the soil has a moderate spatial autocorrelation, all in line with the index model. Regarding the spatial distribution, zones with high TN content are mainly scattered in the form of patches in the east, south, and northwest of the Jiansanjiang area, while zones with low TN content are mainly scattered in the northwestern, central, and western portions of the area. Zones with high TP content are mainly distributed in the east and northwest, while zones with low TP content are in the central portion. Moreover, the N/P ratio is distributed in a mosaic-like pattern. Specifically, zones with high N/P ratios are distributed in the form of patches in the central, southern, and northeastern portions, while zones with low high N/P ratios are mainly distributed in the northwest. The types of the soil, the Quaternary, and land uses of the study area are important structural and random factors affecting the ecological stoichiometric characteristics of soil nitrogen and phosphorus, while the types of the soil parent materials and landforms have little effect on these characteristics.
  • 加载中
  • [1] Condron L M, Turner B L, Cade-Menun B J, et al. Chemistry and dynamics of soil organic phosphorus[G]// Sims J T,Sharpley A N. Phosphorus:Agriculture and the Environment, American Society of Agronomy,Crop Science Society of America,Soil Science Society of America,Madison, 2005:87-121.

    Google Scholar

    [2] Bünemann E K, Condron L M. Phosphorus and sulphur cycling in terrestrial Ecosystems[G]//Marschner P,Rengel Z. Nutrient Cycling in Terrestrial Ecosystems. Berlin:Springer-Verlag, 2007:65-92.

    Google Scholar

    [3] 朱兆良. 中国土壤氮素研究[J]. 土壤学报, 2008, 45(5):778-783.

    Google Scholar

    [4] Zhu Z L. Research on soil nitrogen in China[J]. Acta Pedologica Sinica, 2008, 45(5):778 - 783.

    Google Scholar

    [5] 李建辉, 李晓秀, 张汪寿, 等. 基于地统计学的北运河下游土壤养分空间分布[J]. 地理科学, 2011, 31(8):1001-1006.

    Google Scholar

    [6] Li J H, Li X X, Zhang W S, et al. Spatial variation of soil nutrients in downstream districts of Beiyunhe river using geostatistical methods[J]. Scientia Geographica Sinica, 2011, 31(8):1001-1006.

    Google Scholar

    [7] 华孟, 王坚. 土壤物理学[M]. 北京: 北京农业大学出版社, 1993:38-43.

    Google Scholar

    [8] Hua M, Wang J. Soil physics[M]. Beijing: Beijing Agricultural University Press, 1993:38-43.

    Google Scholar

    [9] Ryan J, Ibrikci H, Singh M, et al. Response to residual and currently applied phosphorus in dryland cereal/legumerotations in three Syrian Mediterranean agroecosystems[J]. European Journal of Agronomy, 2008, 28:126-137.

    Google Scholar

    [10] 崔明, 蔡强国, 范昊明. 东北黑土区土壤侵蚀研究进展[J]. 水土保持研究, 2007, 14(5):29-34.

    Google Scholar

    [11] Cui M, Cai Q G, Fan H M. Research progress on the soil erosion in black soil region of Northeast China[J]. Research of Soil and Water Conservation, 2007, 14(5):29-34.

    Google Scholar

    [12] Brady N C, Weil R R. Nature and properties of soils[M]. New York: Macmillan Publishing Company, 2007.

    Google Scholar

    [13] Zhang S L, Yan L L, Huang J, et al. Spatial heterogeneity of soil C:N ratio in a Mollisol watershed of Northeast China[J]. Land Degradation and Development, 2016, 27(2):295-304.

    Google Scholar

    [14] Zhang S L, Zhang X Y, Ted H, et al. Influence of topography and land management on soil nutrients variability in Northeast China[J]. Nutrient Cycling in Agroecosystems, 2011, 89(3):427-438.

    Google Scholar

    [15] Withers P J A, Hodgkinson R A. The effect of farming practices on phosphorus transfer to a headwater stream in England[J]. Agriculture Ecosystems Environment, 2009, 131(3):347-55.

    Google Scholar

    [16] Zhang X Y, Sui Y Y, Zhang X D, et al. Spatial variability of nutrient properties in black soil of Northeast China[J]. Pedosphere, 2007, 17(1):19-29.

    Google Scholar

    [17] Zhang S L, Ted H, Zhang X Y, et al. Spatial distribution of soil nutrient at depth in black soil of Northeast China:A case study of soil available phosphorus and total phosphorus[J]. Journal of Soils and Sediments, 2014, 14(11):1775-1789.

    Google Scholar

    [18] Chatterjee S, Santra P, Majumdar K, et al. Geostatistical approach for management of soil nutrients with special emphasis on different forms of potassium considering their spatial variation in intensive cropping system of West Bengal,India[J]. Environmental Monitoring and Assessment, 2015, 187(4):1-17.

    Google Scholar

    [19] Wang Y Q, Zhang X C, Huang C Q. Spatial variability of soil total nitrogen and soil total phosphorus under different land uses in a small watershed on the Loess Plateau,China[J]. Geoderma, 2009, 150(1/2):141-149.

    Google Scholar

    [20] 高君亮, 罗凤敏, 高永, 等. 农牧交错带不同土地利用类型土壤碳氮磷生态化学计量特征[J]. 生态学报, 2019, 39(15):5594-5602.

    Google Scholar

    [21] Gao J L, Luo F M, Gao Y, et al. Ecological soil C,N,and P stoichiometry of different land use patterns in the agriculture-pasture ecotone of Northern China[J]. Acta Ecologica Sinica, 2019, 39(15):5594-5602.

    Google Scholar

    [22] Elser J J, Sterner R W, Gorokova E, et al. Biological stoiciometry from genes to ecosystems[J]. Ecology Letters, 2000, 3(6):540-550.

    Google Scholar

    [23] 李从娟, 雷加强, 徐新文, 等. 塔克拉玛干沙漠腹地人工植被及土壤CNP的化学计量特征[J]. 生态学报, 2013, 33(18):5760-5767.

    Google Scholar

    [24] Li C J, Lei J Q, Xu X W, et al. The stoichiometric characteristics of C,N,P for artificial plants and soil in the hinterland of Taklimakan Desert[J]. Acta Ecologica Sinica, 2013, 33(18):5760-5767.

    Google Scholar

    [25] 朱永青, 崔云霞, 李伟迪, 等. 太滆运河流域不同用地方式下土壤pH值、有机质及氮磷含量特征分析[J]. 生态与农村环境学报, 2020, 36(2):171-178.

    Google Scholar

    [26] Zhu Y Q, Cui Y X, Li W D, et al. Analysis of soil pH,organic matter,nitrogen and phosphate characteristics under different land use types in Taige Canal Valley[J]. Journal of Ecology and Rural Environment, 2020, 36(2):171-178.

    Google Scholar

    [27] 马泉来, 王小玉, 赵曼宇, 等. 黑土区小流域土壤氮磷生态化学计量空间分异特征[J]. 生态与农村环境学报, 2020, 36(10):1325-1332.

    Google Scholar

    [28] Ma Q L, Wang X Y, Zhao M Y, et al. Spatial variability of ecological stoichiometry of soil nitrogen and phosphorus in a mollisol watershed of China[J]. Journal of Ecology and Rural Environment, 2020, 36(10):1325-1332.[21] DZ/T 0258—2014多目标区域地球化学调查规范(1:250 000)[S]. 北京: 中国标准出版社, 2014:3-21.

    Google Scholar

    [21] DZ/T 0258—2014 Specification for multi-objective regional geochemical survey (1:250 000) [S]. Beijing: Standards Press of China, 2014:3-21.

    Google Scholar

    [29] Yost R S, Uehara G, Fox R L. Geostatistical analysis of soil chemical properties of large areas.I. Semi-variograms[J]. Soil Science Society of America Journal, 1982, 46:1028-1032.

    Google Scholar

    [30] Robertson G P. Geostatistics for the environmental sciences[M]. Plainwell: Gamma Design Software, 2008.[24] DZ/T 0259—2016土地质量地球化学评价规范[S]. 北京: 地质出版社, 2016:3-21.

    Google Scholar

    [24] DZ/T 0259—2016 Specification of land quality geochemical assessment[S]. Beijing: Geological Publishing House, 2016:3-21.

    Google Scholar

    [31] 孙忠祥, 李勇, 赵云泽, 等. 旱作区土壤有机碳密度空间分布特征与其驱动力分析[J]. 农业机械学报, 2019, 50(1):255-262.

    Google Scholar

    [32] Sun Z X, Li Y, Zhao Y Z, et al. Analysis on spatial distribution characteristics and driving forces of soil organic carbon density in dry farming region[J]. Transactions of the Chinese Society for Agricultural Machinery. 2019, 50(1):255-262.

    Google Scholar

    [33] 吴崇书, 章明奎. 长期不同施肥对茶园土壤碳氮磷构成的影响[J]. 土壤通报, 2015, 46(3):578-583.

    Google Scholar

    [34] Wu C S, Zhang M K. Effects of long-term different fertilization on carbon,nitrogen and phosphorus pools in tea garden soils[J]. Chinese Journal of Soil Science, 2015, 46(3):578-583.

    Google Scholar

    [35] Tian H Q, Chen G S, Zhang C, et al. Pattern and variation of C:N:P ratios in China's soils:A synthesis of observational data. Biogeochemistry, 2010, 98 (s1-3):139-151.

    Google Scholar

    [36] 江叶枫, 叶英聪, 郭熙, 等. 江西省耕地土壤氮磷生态化学计量空间变异特征及其影响因素[J]. 土壤学报, 2017, 54(6):1527-1539.

    Google Scholar

    [37] Jiang Y F, Ye Y C, Guo X, et al. Spatial variability of ecological stoichiometry of soil nitrogen and phosphorus in farmlands of Jiangxi Province and its influencing factors[J]. Acta Pedologica Sinica, 2017, 54(6):1527-1539.

    Google Scholar

    [38] 卓志清, 李勇, 兴安, 等. 东北旱作区土壤碳氮磷生态化学计量特征及其影响因素[J]. 农业机械学报, 2019, 50(10):259-268,336.

    Google Scholar

    [39] Zhuo Z Q, Li Y, Xing A, et al. Characteristic of ecological stoichiometry of soil C,N and P and its influencing factors in dry farming region of Northeast China[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(10):259-268,336.

    Google Scholar

    [40] Smith V H. Effects of nitrogen:Phosphorus supply ratios on nitrogen fixation in agricultural and pastoral ecosystems[J]. Biogeochemistry, 1992, 18(1):19-35.

    Google Scholar

    [41] 胡玉福, 邓良基, 张世熔, 等. 川中丘陵区城墙岩群和蓬莱镇组紫色岩上土壤性质研究[J]. 土壤通报, 2007, 38(6):1076-1080.

    Google Scholar

    [42] Hu Y F, Deng L J, Zhang S R, et al. The soil proper ties of soils developed from K1cg and J3p in centr al hill region of Sichuan basin[J]. Chinese Journal of Soil Science, 2007, 38(6):1076-1080.

    Google Scholar

    [43] 罗由林, 李启权, 王昌全, 等. 近30年川中丘陵区不同土地利用方式土壤碳氮磷生态化学计量特征变化[J]. 土壤, 2016, 48(4):726-733.

    Google Scholar

    [44] Luo Y L, Li Q Q, Wang C Q, et al. Last 30a changes of C,N and P ecological stoichiometry of different land use types in hilly area of mid-Sichuan basin,Southwest China[J]. Soils, 2016, 48(4):726-733.

    Google Scholar

    [45] 张晗, 欧阳真程, 赵小敏, 等. 江西省耕地土壤氮素空间变异特征及其主控因素[J]. 水土保持学报, 2018, 32(5):1-9.

    Google Scholar

    [46] Zhang H, Ouyang Z C, Zhao X M, et al. spatial variation of soil nitrogen and its main controlling factors in cultivated land of Jiangxi Province[J]. Journal of Soil and Water Conservation, 2018, 32(5):1-9.

    Google Scholar

    [47] 杨贺平. 松嫩平原中南部黑土氮流失程度及分布特征研究[J]. 地质与资源, 2021, 30(5), 577-582.

    Google Scholar

    [48] Yang H P. Nitrogen loss degree and distribution characteristics of black soil area in south-central Songnen Plain[J]. Geology and Resources, 2021, 30(5), 577-582.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(377) PDF downloads(82) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint