[1] |
孔牧, 杨少平. 森林沼泽景观区有机质对元素表生地球化学特征的影响机制[J]. 物探与化探, 2008, 32(1):31-32,74.
Google Scholar
|
[2] |
Kong M, Yang S P. Preliminary research into the disturbed principle of organic material to character of supergene-geochemistry in forest marsh landscape andscape area[J]. Geophysical and Geochemical Exploration, 2008, 32(1):31-32,74.
Google Scholar
|
[3] |
Rasmussen C, Heckman K, Wieder W R, et al. Beyond clay:Towards an improved set of variables for predicting soil organic matter content[J]. Biogeochemistry, 2018, 137(5):297-306.
Google Scholar
|
[4] |
戴慧敏, 刘凯, 宋运红, 等. 东北地区黑土退化地球化学指示与退化强度[J]. 地质与资源, 2020, 29(6):510-517.DOI:10.13686/j.cnki.dzyzy.2020.06.002.
Google Scholar
|
[5] |
Dai H M, Liu K, Song Y H, et al. Black soil degradation and intensity in northeast China: Geochemical indication[J]. Geology and Resources, 2020, 29(6):510-517.DOI:10.13686/j.cnki.dzyzy.2020.06.002.
Google Scholar
|
[6] |
刘焕军, 张美薇, 杨昊轩, 等. 多光谱遥感结合随机森林算法反演耕作土壤有机质含量[J]. 农业工程学报, 2020, 36(10):134-140.
Google Scholar
|
[7] |
Liu H J, Zhang M W, Yang H X, et al. Invertion of cultivated soil organic matter content combining multi-spectral remote sensing and random forest algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(10):134-140.
Google Scholar
|
[8] |
屈冉, 张雅琼, 聂忆黄, 等. 基于多光谱遥感影像的富川县表层土壤有机质含量反演[J]. 环境与可持续发展, 2019, 44(1):154-157.
Google Scholar
|
[9] |
Qu R, Zhang Y Q, Nie Y H, et al. Inversion of surface soil organic matter content in Fuchuan county based on multi spectral remote sensing image[J]. Environment and Sustainable Development, 2019, 44(1):154-157.
Google Scholar
|
[10] |
陈德宝, 陈桂芬. 基于Landsat8遥感图像的黑土区土壤有机质含量反演研究[J]. 中国农机化学报, 2020, 41(6):194-198.
Google Scholar
|
[11] |
Chen D B, Chen G F. Inversion of soil organic matter content in black soil region based on landsat8 remote sensing image[J]. Journal of Chinese Agricultural Mechanization, 2020, 41(6):194-198.
Google Scholar
|
[12] |
陈思明, 邹双全, 毛艳玲, 等. 土壤光谱重建的湿地土壤有机质含量多光谱反演[J]. 光谱学与光谱分析, 2018, 38(3):912-917.
Google Scholar
|
[13] |
Chen S M, Zou S Q, Mao Y L, et al. Inversion of soil organic matter content in wetland using multispectral data based on soil spectral reconstruction[J]. Spectroscopy and Spectral Analysis, 2018, 38(3):912-917.
Google Scholar
|
[14] |
Dhawale N M, Adamchuk V I, Prasher S O, et al. Proximal soil sensing of soil texture and organic matter with a prototype portable mid-infrared spectrometer[J]. European Journal of Soil Science, 2015, 66(4): 661-669.
Google Scholar
|
[15] |
马驰. 基于Sentinel-2A遥感影像土壤有机质含量的反演研究[J]. 北方园艺, 2020(2):94-100.
Google Scholar
|
[16] |
Ma C. Inversion of soil organic matter content based on sentinel-2A remote sensing image[J]. Northern Horticulture, 2020(2):94-100.
Google Scholar
|
[17] |
刘鹏. 孙吴县耕地质量评价[D]. 哈尔滨: 东北农业大学, 2020.
Google Scholar
|
[18] |
Liu P. Evaluation of cultivated land quality in Sunwu County[D]. Harbin: Northeast Agricultural University, 2020.
Google Scholar
|
[19] |
李丹丹. 黑河市耕地地力评价与土壤改良对策研究[D]. 哈尔滨: 东北农业大学, 2018.
Google Scholar
|
[20] |
Li D D. Investigation and evaluation on cultivated land fertility of Heihe City[D]. Harbin: Northeast Agricultural University, 2018.
Google Scholar
|
[21] |
Breiman L. Random forests[J]. Machine Learning, 2001, 45(1):5-32.
Google Scholar
|
[22] |
彭刘亚, 解惠婷, 冯伟栋. 基于随机森林算法的砂土液化预测方法[J]. 物探与化探, 2020, 44(6):1429-1434.
Google Scholar
|
[23] |
Peng L Y, Xie H T, Feng W D. The method of predict sand liquefaction based on random forest algorithm[J]. Geophysical and Geochemical Exploration, 2020, 44(6):1429-1434.
Google Scholar
|
[24] |
王琨, 肖克炎, 丛源. 对数比变换和偏最小二乘法在地球化学组合异常提取中的应用——以湘西北铅锌矿为例[J]. 物探与化探, 2015, 39(1):141-148.
Google Scholar
|
[25] |
Wang K, Xiao K Y, Cong Y. Log-ratio transformation and PLS methods for identifying integrated geochemical anomalies: A case study of lead-zinc mineralization in northwestern Hunan[J]. Geophysical and Geochemical Exploration, 2015, 39(1):141-148.
Google Scholar
|
[26] |
陈昊宇, 杨光, 韩雪莹, 等. 基于连续小波变换的土壤有机质含量高光谱反演[J]. 中国农业科技导报, 2021, 23(5):132-142.DOI:10.13304/j.nykjdb.2020.0742.
Google Scholar
|
[27] |
Chen H Y, Yang G, Han X Y, et al. Hyperspectral inversion of soil organic matter content based on continuous wavelet transform journal of agricultural science and technology[J]. Journal of Agricultural Science and Technology, 2021, 23(5):132-142.DOI:10.13304/j.nykjdb.2020.0742.
Google Scholar
|
[28] |
叶勤, 姜雪芹, 李西灿, 等. 基于高光谱数据的土壤有机质含量反演模型比较[J]. 农业机械学报, 2017, 48(3):164-172.
Google Scholar
|
[29] |
Ye Q, Jiang X Q, Li X C, et al. Comparison on inversion model of soil organic matter content based on hyperspectral data[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(3):164-172.
Google Scholar
|
[30] |
王启元, 赵艳玲, 房铄东, 等. 基于多光谱遥感的裸土土壤含水量反演研究[J]. 矿业科学学报, 2020, 5(6):608-615.
Google Scholar
|
[31] |
Wang Q Y, Zhao Y L, Fang S D, et al. Inversion of soil moisture in bare soil based on multi-spectral remote sensing[J]. Journal of Mining Science and Technology, 2020, 5(6): 608-615.
Google Scholar
|
[32] |
汤超. 淮北矿区有机质含量反演[J]. 农业与技术, 2021, 41(13):123-128.DOI:10.19754/j.nyyjs.20210715035.
Google Scholar
|
[33] |
Tang C. Inversion of organic matter content in Huaibei mining area[J]. Agriculture and Technology, 2021, 41(13):123-128.DOI:10.19754/j.nyyjs.20210715035.
Google Scholar
|
[34] |
谢树刚. 基于高光谱的黄河三角洲土壤有机质含量估测模型研究[D]. 泰安: 山东农业大学, 2021.DOI:10.27277/d.cnki.gsdnu.2021.000631.
Google Scholar
|
[35] |
Xie S G. Research on estimation model of soil organic matter content in Yellow River Delta based on hyperspectral[D]. Tai’an: Shandong Agricultural University, 2021.DOI: 10.27277/d.cnki.gsdnu.2021.000631.
Google Scholar
|
[36] |
陶培峰, 王建华, 李志忠, 等. 基于高光谱的土壤养分含量反演模型研究[J]. 地质与资源, 2020, 29(1):68-75,84.DOI:10.13686/j.cnki.dzyzy.2020.01.006.
Google Scholar
|
[37] |
Tao P F, Wang J H, Li Z Z, et al. Research of soil nutrient content inversion model based on hyperspectral data[J]. Geology and Resources, 2020, 29(1):68-75,84.DOI:10.13686/j.cnki.dzyzy.2020.01.006.
Google Scholar
|