| [1] |
邹才能, 朱如凯, 吴松涛, 等. 常规与非常规油气聚集类型、特征、机理及展望——以中国致密油和致密气为例[J]. 石油学报, 2012, 33(2):173-187.
Google Scholar
|
| [2] |
Zou C N, Zhu R K, Wu S T, et al. Types,haracteristics,genesis and prospects of conventional andunconventional hy drocarbon accumulations:Taking tight oil and tight gas in China an instance[J]. Acta Petrolei Sinica, 2012, 33(2):173-187.
Google Scholar
|
| [3] |
田建涛, 赵超峰, 张伟, 等. 水力压裂井中监测方法不对称压裂裂缝分析[J]. 石油物探, 2019, 58(4):563-571.
Google Scholar
|
| [4] |
Tian J T, Zhao C F, Zhang W, et al. Analysis of asymmetric hydraulic fracture for borehole microseismic monitoring[J]. Geophysical Prospecting for Petroleum, 2019, 58(4):563-571.
Google Scholar
|
| [5] |
刘勇, 方伍宝, 李振春, 等. 基于叠前地震的脆性预测方法及应用研究[J]. 石油物探, 2016, 55(3):425-432.
Google Scholar
|
| [6] |
Liu Y, Fang W B, Li Z C, et al. Brittleness prediction and application based on pre-stack seismic inversion[J]. Geophysical Prospecting for Petroleum, 2016, 55(3):425-432.
Google Scholar
|
| [7] |
张晓语, 杜启振, 马中高, 等. 各向异性页岩储层脆性特征分析[J]. 物探与化探, 2016, 40(3):541-549.
Google Scholar
|
| [8] |
Zhang X Y, Du Q Z, Ma Z G, et al. Brittleness characteristics of anisotropic shale reservoirs[J]. Geophysical and Geochemical Exploration, 2016, 40(3):541-549.
Google Scholar
|
| [9] |
马妮, 林正良, 胡华锋, 等. 页岩地层的破裂压力地震预测方法[J]. 石油物探, 2019, 58(6):926-934.
Google Scholar
|
| [10] |
Ma N, Lin Z L, Hu H F, et al. A seismic-based prediction method for fracture pressure in a shale formation[J]. Geophysical Prospecting for Petroleum, 2019, 58(6):926-934.
Google Scholar
|
| [11] |
Obert L, Duvall W I. Rock mechanics and the design of structures in rock[M]. Hoboken: Wiley, 1967.
Google Scholar
|
| [12] |
黄军平, 张智盛, 杨占龙, 等. 致密岩石矿物组分含量及脆性指数多元回归定量预测[J]. 新疆石油地质, 2016, 37(3):346-351.
Google Scholar
|
| [13] |
Huang J P, Zhang Z S, Yang Z L, et al. Quantitative prediction of mineral component content and brittleness index in tight rocks based on multivariate regression analysis[J]. Xinjiang Petroleum Geology, 2016, 37(3):346-351.
Google Scholar
|
| [14] |
任岩, 曹宏, 姚逢昌, 等. 吉木萨尔致密油储层脆性及可压裂性预测[J]. 石油地球物理勘探, 2018, 53(3):511-519.
Google Scholar
|
| [15] |
Ren Y, Cao H, Yao F C, et al. Brittleness and fracability prediction for tight oil reservoir in Jimsar Sag,Junggar Basin[J]. Oil Geophysical Prospecting, 2018, 53(3):511-519.
Google Scholar
|
| [16] |
张平, 夏晓敏, 崔涵, 等. 基于岩石物理实验的致密油储集层脆性指数预测——以柴达木盆地跃灰101井区为例[J]. 新疆石油地质, 2019, 40(5):615-623.
Google Scholar
|
| [17] |
Zhang P, Xia X M, Cui H, et al. Tight oil reservoir brittleness index prediction based on petrophysical experiments:A case from Yuehui 101 area of Qaidam Basin[J]. Xinjiang Petroleum Geology, 2019, 40(5):615-623.
Google Scholar
|
| [18] |
孙赞东, 贾承造, 李相方, 等. 非常规油气勘探与开发[M]. 北京: 石油工业出版社, 2011:407-593.
Google Scholar
|
| [19] |
Sun Z D, Jia C Z, Li X F, et al. Unconventional oil & gas exploration and development [M]. Beijing: Petroleum Industry Press, 2011:407-593.
Google Scholar
|
| [20] |
石道涵, 张兵, 何举涛, 等. 鄂尔多斯长7致密砂岩储层体积压裂可行性评价[J]. 西安石油大学学报:自然科学版, 2014, 29(1):53-55.
Google Scholar
|
| [21] |
Shi D H, Zhang B, He J T, et al. Feasibility evaluation of volume fracturing of Chang 7 tight sandstone reservoir in Ordos Basin[J]. Journal of Xi'an Shiyou University:Natural Science Edition, 2014, 29(1):53-55.
Google Scholar
|
| [22] |
许孝凯, 翟勇, 刘美杰, 等. 复杂储层岩石脆性分析及应用研究[J]. 测井技术, 2015, 39(4):486-490.
Google Scholar
|
| [23] |
Xu X K, Zhai Y, Liu M J, et al. Brittleness analysis of rock and its application to complex reservoirs[J]. Logging Technology, 2015, 39(4):486-490.
Google Scholar
|
| [24] |
许杰, 刘坤岩, 武清钊, 等. 焦石坝页岩脆性评价与预测[J]. 石油物探, 2019, 58(3):453-460.
Google Scholar
|
| [25] |
Xu J, Liu K Y, Wu Q Z. Evaluation and prediction of shale brittleness in the Jiaoshiba area[J]. Geophysical Prospecting for Petroleum, 2019, 58(3):453-460.
Google Scholar
|
| [26] |
刘雅杰, 李生杰, 王永刚, 等. 横波预测技术在苏里格气田储层预测中的应用[J]. 石油地球物理勘探, 2016, 51(1):165-172.
Google Scholar
|
| [27] |
Liu Y J, Li S J, Wang Y G, et al. Reservoir prediction based on shear wave in Sulige Gas Field[J]. Oil Geophysical Prospecting, 2016, 51(1):165-172.
Google Scholar
|
| [28] |
Castagna J P, Batzle M L, Eastwood R L. Relationships between compressional-wave and shear-wave velocities in clastic silicate rocks[J]. Geophysics, 1985, 50(4):571-581.
Google Scholar
|
| [29] |
Xu S Y, White R E. A physical model for shear-wave velocity prediction[J]. Geophysical Prospecting, 1996, 44(4):687-717.
Google Scholar
|
| [30] |
LEE M W. A simple method of predicting S-wave velocity[J]. Geophysics, 2006, 71(6):F161-F164.
Google Scholar
|
| [31] |
刘财, 乔汉青, 郭智奇, 等. 基于粒子群算法的页岩孔隙结构反演及横波速度预测[J]. 地球物理学进展, 2017, 32(2):689-695.
Google Scholar
|
| [32] |
Liu C, Qiao H Q, Guo Z Q, et al. Shale pore structure inversion and shear wave velocity prediction based on particle swarm optimization(pso) algorithm[J]. Progress in Geophysics, 2017, 32(2):689-695.
Google Scholar
|
| [33] |
刘倩, 印兴耀, 李超. 含不连通孔隙的致密砂岩储层岩石弹性模量预测方法[J]. 石油物探, 2015, 54(6):635-642.
Google Scholar
|
| [34] |
Liu Q, Yin X Y, Li C. Rock elastic modulus estimation for tight sandstone reservoirs with disconnected pores[J]. Geophysical Prospecting for Petroleum, 2015, 54(6):635-642.
Google Scholar
|
| [35] |
张秉铭, 刘致水, 刘俊州, 等. 富有机质泥页岩岩石物理横波速度预测方法研究[J]. 石油物探, 2018, 57(5):658-667.
Google Scholar
|
| [36] |
Zhang B M, Liu Z S, Liu J Z, et al. A new S-wave velocity estimation method for organic-enriched shale[J]. Geophysical Prospecting for Petroleum, 2018, 57(5):658-667.
Google Scholar
|
| [37] |
Dutta S, Gupta J P. PVT correlations for Indian crude using artificial neural networks[J]. Journal of Petroleum Science and Engineering, 2010, 72(1):93-109.
Google Scholar
|
| [38] |
Cheng C S. A multi-yaler neural network model for detecting changes in the process mean[J]. Computers and Industrial Engineering, 1995, 28(1):51-61.
Google Scholar
|
| [39] |
史忠科. 神经网络控制理论[M]. 西安: 西北工业大学出版社, 1997.
Google Scholar
|
| [40] |
Shi Z K. Neural network control theory [M]. Xi'an: Northwestern Polytechnical University Press, 1997.
Google Scholar
|
| [41] |
李文成, 彭嫦姿, 杨鸿飞. 横波预测技术在 YB 地区的应用[J]. 地球物理学进展, 2014, 29(4):1695-1700.
Google Scholar
|
| [42] |
Li W C, Peng C Z, Yang H F. The application of S-wave prediction technology in YB area[J]. Progress in Geophysics, 2014, 29(4):1695-1700.
Google Scholar
|
| [43] |
周雪晴, 张占松, 张超谟, 等. 基于矿物组分和成岩作用的致密砂岩储层脆性评价方法——以鄂尔多斯盆地东北部某区块为例[J]. 油气地质与采收率, 2017, 24(5):10-16.
Google Scholar
|
| [44] |
Zhou X Q, Zhang Z S, Zhang C M, et al. A new brittleness evaluation method for tight sandstonereservoir based on mineral compositions and diagenesis:A case study of a certain block in the northeastern Ordos Basin[J]. Petroleum Geology and Recovery Efficiency, 2017, 24(5):10-16.
Google Scholar
|
| [45] |
徐蕾, 师永民, 徐常胜, 等. 长石族矿物对致密油储渗条件的影响——以鄂尔多斯盆地长6油层组为例[J]. 石油勘探与开发, 2013, 40(4):448-454.
Google Scholar
|
| [46] |
Xu L, Shi Y M, Xu C S, et al. Influences of feldspars on the storage and permeability conditions in tight oil reservoirs:A case study of Chang-6 Oil Layer Group,Ordos Basin[J]. Petroleum Exploration and Development, 2013, 40(4):448-454.
Google Scholar
|
| [47] |
Rickman R, Mullen M J, Petre J E, et al. Apractical use of shale petrophysics for stimulation designoptimization:All shale plays are not clones of the Barnett Shale[C]// SPE Technical Conference and Exhibition,Society of Petroleum Engineers, 2008, 48(3):536-567.
Google Scholar
|