China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2021 Vol. 45, No. 6
Article Contents

SHI Jia-Yu, GUO Peng, LI Yong. 2021. Research and implementation of key technologies of spectral induced polarization instruments. Geophysical and Geochemical Exploration, 45(6): 1475-1481. doi: 10.11720/wtyht.2021.0443
Citation: SHI Jia-Yu, GUO Peng, LI Yong. 2021. Research and implementation of key technologies of spectral induced polarization instruments. Geophysical and Geochemical Exploration, 45(6): 1475-1481. doi: 10.11720/wtyht.2021.0443

Research and implementation of key technologies of spectral induced polarization instruments

  • The measurement of the electrochemical polarization effect of rock (ore) in an AC electric field (i.e., the phase between receiving potential different and transmitting current) using spectral induced polarization (SIP) can provide important information for distinguishing ore from non-ore. Based on the deep research on the key technologies of SIP instruments, this study designs a new synchronous correlation detection technology of weak signals, and accordingly improves the prototype for practical purposes, simplifies the circuit structure, and improves the stability of phase measurement of the SIP instruments. The tests in mining areas show that the improved SIP instrument has lower cost, stronger anti-interference ability, higher practicability, and is suitable for large-scale promotion and application.
  • 加载中
  • [1] 吕庆田, 张晓培, 汤井田, 等. 金属矿地球物理勘探技术与设备:回顾与进展[J]. 地球物理学报, 2019, 62(10):3629-3664.

    Google Scholar

    [2] Lyu Q T, Zhang X P, Tang J T, et al. Review on advancement in technology and equipment of geophysical exploration for metallic deposits in China[J]. Chinese Journal Geophysics, 2019, 62(10):3629-3664.

    Google Scholar

    [3] 刘崧. 谱激电法[M]. 武汉: 中国地质大学出版社, 1998.

    Google Scholar

    [4] Liu S. Spectral induced polarization method[M]. Wuhan: China University of Geosciences Press, 1998.

    Google Scholar

    [5] 郭鹏, 肖都, 石福升, 等. 相位激电和时域激电对激电效应响应关系研究[J]. 物探化探计算技术, 2014, 36(6):697-683.

    Google Scholar

    [6] Guo P, Xiao D, Shi F S, et al. Study on the response relationship between phase IP and time domain IP[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2014, 36(6):697-683.

    Google Scholar

    [7] 张赛珍. 岩矿石的低频电相位频率特性的物理模型和它的拟合方法[A]// 中国科学院地球物理研究所论文摘要集(1984)[C], 1989.

    Google Scholar

    [8] Zhang S Z. Physical model of low frequency electrical phase frequency characteristics of rock and ore and its fitting method[A]// Abstracts of Institute of Geophysics, Chinese Academy of Sciences(1984)[C], 1989.

    Google Scholar

    [9] 张宪润, 陈儒军. 激电相对相位法区分矿与非矿异常的成功实例[J]. 物探与化探, 1998, 22(4):251-254.

    Google Scholar

    [10] Zhang X R, Chen R J. A successful example of distinguishing ore and non-ore anomalies by IP relative phase method[J]. Geophysical and Geochemical Exploration, 1998, 22(4):251-254.

    Google Scholar

    [11] 石福升. 大功率多频发射系统研究[D]. 北京:中国地质大学(北京),2005.

    Google Scholar

    [12] Shi F S. Research on high power multi-frequency transmission system[D]. Beijing: China University of Geosciences(Beijing), 2005.

    Google Scholar

    [13] 石福升. 大功率多功能发射系统研究[J]. 地球物理学进展, 2009, 24(3):1109-1114.

    Google Scholar

    [14] Shi F S. A study on high-power multi-function transmitting system[J]. Progress in Geophysics, 2009, 24(3):1109-1114.

    Google Scholar

    [15] 王猛, 金胜, 魏文博, 等. 大功率井—地电磁同步发射技术分析与系统实现[J]. 地球物理学报, 2019, 62(10):3794-3802.

    Google Scholar

    [16] Wang M, Jin S, Wei W B, et al. The technique analysis and achievement of the high power borehole-ground electromagnetic synchronous transmitter system[J]. Chinese Journal Geophysics, 2019, 62(10):3794-3802.

    Google Scholar

    [17] 林君, 吴勇, 薛开昶, 等. CSAMT探测系统的低功耗高精度同步时钟源设计[J]. 中南大学学报:自然科学版, 2014, 45(9):3193-3199.

    Google Scholar

    [18] Lin J, Wu Y, Xue K C, et al. Design of low power consumption and high precision synchronization clock reference source for CSAMT detection systems[J]. Journal of Central South University:Science and Technology, 2014, 45(9):3193-3199.

    Google Scholar

    [19] 真齐辉, 底青云. 高频大功率CSAMT发射技术研究[J]. 地球物理学报, 2017, 60(11):4160-4164.

    Google Scholar

    [20] Zhen Q H, Di Q Y. High-frequency high-power CSAMT transmitting technology research[J]. Chinese Journal Geophysics, 2017, 60(11):4160-4164.

    Google Scholar

    [21] 中国地质科学院地球物理地球化学勘查研究所. 阵列相位激电测量系统完善与推广应用成果报告[R]. 2013.

    Google Scholar

    [22] Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences. Report on improvement, popularization and application of array phase IP measurement system[R]. 2013.

    Google Scholar

    [23] 石福升. 高精度数字稳流技术研究[J]. 物探与化探, 2004, 28(4):358-360.

    Google Scholar

    [24] Shi F S. A research of high-precision digital current-regulation technology[J]. Geophysical and Geochemical Exploration, 2004, 28(4):358-360.

    Google Scholar

    [25] 郭鹏, 肖都, 石福升. 阵列相位激电法在弱极化异常区的试验效果[J]. 物探与化探, 2012, 36(5):772-774.

    Google Scholar

    [26] Guo P, Xiao D, Shi F S. Experimental effect of array phase IP method in weak polarization anomaly area[J]. Geophysical and Geochemical Exploration, 2012, 36(5):772-774.

    Google Scholar

    [27] 肖都, 郭鹏, 林品荣, 等. 相位激电法在强干扰区的应用试验[J]. 物探化探计算技术, 2016, 38(5):593-597.

    Google Scholar

    [28] Xiao D, Guo P, Lin P R, et al. Application test of phase induced polarization method in strong interference area[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2016, 38(5):593-597.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(567) PDF downloads(111) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint