China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2021 Vol. 45, No. 6
Article Contents

WEN Bai-Hong, HU Qing-Hui, ZHANG Lian-Qun. 2021. Affect of configuration parameters of geobody on regularization downward continuation imaging by successive layer optimization. Geophysical and Geochemical Exploration, 45(6): 1553-1558. doi: 10.11720/wtyht.2021.0396
Citation: WEN Bai-Hong, HU Qing-Hui, ZHANG Lian-Qun. 2021. Affect of configuration parameters of geobody on regularization downward continuation imaging by successive layer optimization. Geophysical and Geochemical Exploration, 45(6): 1553-1558. doi: 10.11720/wtyht.2021.0396

Affect of configuration parameters of geobody on regularization downward continuation imaging by successive layer optimization

  • Regularization downward continuation imaging by successive layer optimization (DCSLO) can be used to study the geometrical configuration and physical distribution of geological body(geobody). Due to possible similar features of potential fields for some bodies of different geometrical configurations, the downward continuation imaging is of no-uniqueness. From spectral study of 4 basic configurations of geological bodies and parameter selection for optimum downward continuation for the 35 gravity models of different configurations, a regressive formulas between configuration parameter and shape correction coefficient is obtained and consequently a configuration filter operator is proposed. With the configuration filter operator the DCSLO will enhance the imaging accuracy of geometrical center of complex geobody. A field example of DCSLO for gravity and magnetic data in FengSunChang area in Western Sichuan is given. With the configuration filter operator determined by the seismic structures and the regressive formulas, the DCSLO imaging is consistent with the main geometrical characteristics of the seismic deep structures and overall density logging data. This verified the applicability and effectiveness of the configuration filtering in DCSLO imaging.
  • 加载中
  • [1] 曾华霖. 重力场与重力勘探[M]. 北京: 地质出版社, 2005.

    Google Scholar

    [2] Zeng H L. Gravity field and gravity prospecting [M]. Beijing: Geological Publishing Press, 2005.

    Google Scholar

    [3] Fedi M, Pilkington M. Understanding imaging methods for potential field data[J]. Geophysics, 2012, 77(1):G13-G24.

    Google Scholar

    [4] 栾文贵. 位场解析延拓的稳定化算法[J]. 地球物理学报, 1983, 26(3):263-274.

    Google Scholar

    [5] Luan W G. The stablized algorithm of the analytic continuation for the potential field[J]. Acta Geophysica Sinica, 1983, 26(3):263-274.

    Google Scholar

    [6] Berezkin V M. Method of the total gradient in geophysical prospecting[M]. Moscow: Nedra, 1988 (in Russian).

    Google Scholar

    [7] 梁锦文. 位场向下延拓的正则化方法[J]. 地球物理学报, 1989, 32(5):600-608.

    Google Scholar

    [8] Liang J W. Downward continuation of regularization methods for potential fields[J]. Acta Geophysica Sinica, 1989, 32(5):600-608.

    Google Scholar

    [9] 王邦华, 王理. 重磁位场的正则化向下延拓[J]. 物探化探计算技术, 1998, 20(2):30-35.

    Google Scholar

    [10] Wang B H, Wang L. A new normalized method of downward extrapolation for potential field[J]. Computing Techniques for Geophysical and Geochemical Exploration, 1998, 20(1):30-35.

    Google Scholar

    [11] Fedi M, Florio G. A stable downward continuation by using the ISVD method[J]. Geophysical Journal International, 2002, 151:146-156.

    Google Scholar

    [12] Cooper G. The stable downward continuation of potential field data[J]. Exploration Geophysics, 2004, 35, 260-265.

    Google Scholar

    [13] 徐世浙. 位场延拓的积分—迭代法[J]. 地球物理学报, 2006, 49(4):1176-1182.

    Google Scholar

    [14] Xu S Z. The integral iteration method for continuation of potential fields[J]. Chinese Journal of Geophysics, 2006, 49(4):1176-1182.

    Google Scholar

    [15] 曾小牛, 李夕海, 韩绍卿, 等. 位场向下延拓三种迭代方法之比较[J]. 地球物理学进展, 2011, 26(3):908-915.

    Google Scholar

    [16] Zeng X N, Li X B, Han S Q, et al. A comparison of three iteration methods for downward continuation of potential fields[J]. Progress in Geophysics, 2011, 26(3):908-915.

    Google Scholar

    [17] Zeng X N, Li X H, Su J, et al. An adaptive iterative method for downward continuation of potential-field data from a horizontal plane[J]. Gephysics, 2013, 78(4):J43-J52.

    Google Scholar

    [18] 刘晓刚, 王兴涛, 李迎春, 等. 重力与磁力测量数据向下延拓中最优正则化参数确定方法研究[J]. 测绘学报, 2014, 43(9):881-887.

    Google Scholar

    [19] Liu X G, Wang X T, Li Y C, et al. Optimal regularization parameter determination method in downward continuation of gravimetric and geomagnetic data[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(9):881-887.

    Google Scholar

    [20] 李晓杰, 王真理. 正则化等效层重力向下延拓方法[J]. 地球物理学报, 2018, 61(7):3038-3036.

    Google Scholar

    [21] Li X J, Wang Z L. A study on gravity field downward continuation using the regularized equivalent-layer method[J]. Chinese Journal of Geophysics, 2018, 61(7):3038-3036.

    Google Scholar

    [22] Naidu P. Spectrum of the potential field due to randomly distributed sources[J]. Geophysics, 1968, 33:337-345.

    Google Scholar

    [23] Pawlowski R S. Green's equivalent-layer concept in gravity band-pass filter design[J]. Geophysics, 1994, 59:69-76.

    Google Scholar

    [24] Quarta T, Fedi M, Santis A. Source ambiguity from an estimation of the scaling exponent of potential field power spectra[J]. Geophys. J. Int., 2000, 140:311-323.

    Google Scholar

    [25] 王纯, 张研, 文百红. 改进的重力场向下延拓计算方法[J]. 大庆石油地质与开发, 2018, 37(1):147-153.

    Google Scholar

    [26] Wang C, Zhang Y, Wen B H. The improved calculating method of downward continuation for gravity potential field[J]. Petroleum Geology and Oilfield Development in Daqing, 2018, 37(1):147-153.

    Google Scholar

    [27] 文百红, 杨辉, 张连群, 等. 重磁优化下延成像深部物性结构预测[C]// 中国地球科学联合学术年会 2020:6048-6051.

    Google Scholar

    [28] Wen B H, Yang H, Zhang L Q. Deep physical structure prediction by gravity and magnetic optimized downward continuation imaging[C]// Collection of Chinese earth science integrated symposium: 6048-6051.

    Google Scholar

    [29] 程方道, 黄国强. 重磁位场波谱理论及其应用[M]. 长沙: 中南工业大学出版社, 1987.

    Google Scholar

    [30] Cheng F D, Huang G Q. Spectral theory and its application of gravity and magnetic potential fields [M]. Changsha: Publishing Press of Central South University of Technology, 1987.

    Google Scholar

    [31] 文百红, 程方道. 用于划分磁异常的新方法——插值切割法[J]. 中南矿冶学院学报, 1990, 21(3):229-235.

    Google Scholar

    [32] Wen B H, Cheng F D. A new interpolating cut method for identifying regional and local fields of magnetic anomaly[J]. Journal of Central South Mining and Metallurgy, 1990, 21(3):229-235.

    Google Scholar

    [33] 赵文举, 赵荔, 杨战军, 等. 插值切割位场分离方法改进及其在资料处理中的应用[J]. 物探与化探, 2020, 44(4):886-893.

    Google Scholar

    [34] Zhao W J, Zhao L, Yang Z J, et al. The improvement of the interpolation cutting potential field separation method and its application to data processing[J]. Geophysical and Geochemical Exploration, 2020, 44(4):886-893.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(478) PDF downloads(105) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint