China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2021 Vol. 45, No. 6
Article Contents

GENG Tao, DU Hui, FENG Zhi-Han. 2021. Discussion on the improvement of the error evaluation method in gravity intermediate area terrain correction based on the measured elevation. Geophysical and Geochemical Exploration, 45(6): 1521-1529. doi: 10.11720/wtyht.2021.0289
Citation: GENG Tao, DU Hui, FENG Zhi-Han. 2021. Discussion on the improvement of the error evaluation method in gravity intermediate area terrain correction based on the measured elevation. Geophysical and Geochemical Exploration, 45(6): 1521-1529. doi: 10.11720/wtyht.2021.0289

Discussion on the improvement of the error evaluation method in gravity intermediate area terrain correction based on the measured elevation

  • In the current gravity survey work, the accuracy of digital elevation model (DEM) used in terrain correction is basically avoided when evaluating the accuracy of terrain correction in gravity intermediate area. Therefore, the mean square error of terrain correction calculated by this data in gravity intermediate area is not comprehensive. Based on the analysis of DEM data error and the comparison of actual data, this paper puts forward a method to evaluate the accuracy of DEM data used for terrain correction in the intermediate area of gravity by using the measured elevation values of gravity measuring points, and discusses how to evaluate the error of terrain correction in the intermediate area of gravity caused by DEM error, so as to obtain the accuracy of terrain correction in the intermediate area of gravity closer to the real situation.
  • 加载中
  • [1] 刘宽厚, 耿涛, 杨怀英, 等. 基于便携激光测距仪的重力测量近区地形改正系统[J]. 物探与化探, 2012, 36(3):403-408.

    Google Scholar

    [2] Liu K H, Geng T, Yang H Y, et al. The gravimetry near-station terrain correction instrument system based on laser distance measurement technology[J]. Geophysical and Geochemical Exploration, 2012, 36(3):403-408.

    Google Scholar

    [3] 邸凯昌, 吴凯, 刘召芹, 等. 全景立体视觉的快速近区重力地形改正方法[J]. 遥感学报, 2013, 17(4):759-767.

    Google Scholar

    [4] Di K C, Wu K, Liu Z Q, et al. Fast near-region gravity terrain correction approach based on panoramic stereo vision[J]. Journal of Remote Sensing, 2013, 17(4):759-767.

    Google Scholar

    [5] 赵更新, 张国利, 苏永军, 等. 重力勘探中近区地形改正数据测量方法的试验[J]. 物探与化探, 2012, 36(6):952-955.

    Google Scholar

    [6] Zhao G X, Zhang G L, Su Y J, et al. An experimental study of the data measurement method for near-region terrain correction in gravity exploration[J]. Geophysical and Geochemical Exploration, 2012, 36(6):952-955.

    Google Scholar

    [7] 孙文珂, 籍同冰, 雷受旻, 等. 中国区域重力调查40年回顾[M]. 北京: 地质出版社, 2019.

    Google Scholar

    [8] Sun W K, Ji T B, Lei S M, et al. A review of 40 years of regional gravity survey in China [M]. Beijing: Geological Publishing House, 2019.

    Google Scholar

    [9] 杨子江. 高精度重力地形改正的简化方法[J]. 地质与勘探, 1965(1):26-28.

    Google Scholar

    [10] Yang Z J. A simplified method of high precision gravity terrain correction[J]. Geology and Exploration, 1965(1):26-28.

    Google Scholar

    [11] 吕梓令, 周国藩. 区域重力测量外部改正的几个问题[J]. 物探与化探, 1981, 5(5):257-262.

    Google Scholar

    [12] Lv Z L, Zhou G F. Several problems on external correction of regional gravity survey[J]. Geophysical and Geochemical Exploration, 1981, 5(5):257-262.

    Google Scholar

    [13] 刘文锦, 奚家鉴, 张兴雅. 区域重力测量的地形改正方法[J]. 物探与化探, 1983(2):77-83.

    Google Scholar

    [14] Liu W J, Xi J J, Zhang X Y. Topographic correction method of regional gravity survey[J]. Geophysical and Geochemical Exploration, 1983(2):77-83.

    Google Scholar

    [15] 林振民, 史振松. 几种区域重力地形改正方法的讨论[J]. 物探与化探, 1984, 8(4):193-198.

    Google Scholar

    [16] Lin Z M, Shi Z S. Discussion on several regional gravity topographic correction methods[J]. Geophysical and Geochemical Exploration, 1984, 8(4):193-198.

    Google Scholar

    [17] 冯治汉. 重力中区地形改正系统的研制[J]. 物探与化探, 2002, 26(6):467-469.

    Google Scholar

    [18] Feng Z H. The development of the gravity intermediate area topographic correction system[J]. Geophysical and Geochemical Exploration, 2002, 26(6):467-469.

    Google Scholar

    [19] 马国庆, 孟令顺, 杜晓娟. 重力地形改正的计算机实现[J]. 吉林大学学报:地球科学版, 2008, 38(S1):36-38.

    Google Scholar

    [20] Ma G Q, Meng L S, Du X J. Gravity of the terrain accomplish by computer[J]. Journal of Jilin University:Earth Science Edition, 2008, 38(S1):36-38.

    Google Scholar

    [21] 李振海, 李琼, 林旭. 重力地形改正的计算模型研究[J]. 测绘工程, 2011, 20(2):24-26.

    Google Scholar

    [22] Li Z H, Li Q, Lin X. Research on the terrain correction models in gravity survey[J]. Engineering of Surveying and Mapping, 2011, 20(2):24-26.

    Google Scholar

    [23] 赵军, 关云鹏, 张海龙. 三角平面拟合法在重力地形改正中的应用[J]. 物探与化探, 2012, 36(2):234-236.

    Google Scholar

    [24] Zhao J, Guan Y P, Zhang H L. The application of triangular plane fitting method to gravity terrain correction[J]. Geophysical and Geochemical Exploration, 2012, 36(2):234-236.

    Google Scholar

    [25] 胡明科, 江玉乐, 李超, 等. 基于面积分的重力地形改正方法研究及应用[J]. 物探化探计算技术, 2015, 37(2):182-186.

    Google Scholar

    [26] Hu M K, Jiang Y L, Li C, et al. Research and application on gravity terrain correction method based on surface integral[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2015, 37(2):182-186.

    Google Scholar

    [27] 黎哲君, 周冬瑞, 张毅, 等. 基于DEM重力地形改正方法比较研究[J]. 海洋测绘, 2019, 39(1):1-6.

    Google Scholar

    [28] Li Z J, Zhou D R, Zhang Y, et al. Comparative study on several dem-based strategies forterrain reduction of gravity[J]. Hydrographic Surveying and Charting, 2019, 39(1):1-6.

    Google Scholar

    [29] 张品, 申重阳, 杨光亮, 等. Aster Gdem垂直精度评价及其在重力地形改正中的适用性[J]. 大地测量与地球动力学, 2015, 35(2):318-321.

    Google Scholar

    [30] Zhang P, Sheng C Y, Yang G L, et al. Vertical accuracy assessment of aster GDEM and its applicability analysis in gravity terrain correction[J]. Journal of Geodesy and Geodynamics, 2015, 35(2):318-321.

    Google Scholar

    [31] 刘生荣, 高鹏, 耿涛, 等. 不同源DEM数据在高山区重力中区地形改正中的适用性[J]. 物探与化探, 2019, 43(5):1111-1118.

    Google Scholar

    [32] Liu S R, Gao P, Geng T, et al. The applicability of different sources DEM data in median region terrain correction of gravity in high mountain areas[J]. Geophysical and Geochemical Exploration, 2019, 43(5):1111-1118.

    Google Scholar

    [33] 张俊, 张宝松, 邸兵叶, 等. 高程数据网格间距对重力中区地形改正精度的影响[J]. 物探与化探, 2014, 38(2):157-161.

    Google Scholar

    [34] Zhang J, Zhang B S, Qiu B Y, et al. The effect of the grid spacing of elevation on the accuracy of median region terrain correction of gravity[J]. Geophysical and Geochemical Exploration, 2014, 38(2):157-161.

    Google Scholar

    [35] 札喜旺登. 对重力地形改正工作的一些意见[J]. 物探化探计算技术, 1983(1):22-29.

    Google Scholar

    [36] Zhaxi W D. Some opinions on gravity terrain correction[J]. Computing Techniques for Geophysical and Geochemical Exploration, 1983(1):22-29.

    Google Scholar

    [37] 冯治汉. 区域重力调查中的中区地形改正方法及精度[J]. 物探与化探, 2007, 31(5):455-458.

    Google Scholar

    [38] Feng Z H. A tentative discussion on the median region gravity terrain correction method in regional gravity survey[J]. Geophysical and Geochemical Exploration, 2007, 31(5):455-458.

    Google Scholar

    [39] 张国利, 赵更新, 王德启, 等. 基于DEM条件下对中区地改精度的计算方法[J]. 物探与化探, 2013, 37(6):1134-1140.

    Google Scholar

    [40] Zhang G L, Zhao G X, Wang D Q, et al. A tentative discussion on the precision calculation method of median region terrain correction based on digital elevation model[J]. Geophysical and Geochemical Exploration, 2013, 37(6):1134-1140.

    Google Scholar

    [41] DZ/T0082-93.区域重力调査规范DZ/T0082-93.区域重力调査规范[S]. 中华人民共和国地质矿产部, 1993.

    Google Scholar

    [42] DZ/T0082-93.The standard for regional gravity surveyDZ/T0082-93. The standard for regional gravity survey[S]. Ministry of Geology and Mineral Resources of the People's Republic of China, 1993.

    Google Scholar

    [43] DZ/T0082-2006.区域重力调査规范DZ/T0082-2006.区域重力调査规范[S]. 中华人民共和国国土资源部, 2006.

    Google Scholar

    [44] DZ/T0082-2006.The standard for regional gravity surveyDZ/T0082-2006. The standard for regional gravity survey[S]. Ministry of Land and Resources of the People's Republic of China, 2006.

    Google Scholar

    [45] DZ0004-91.重力调查技术规范(1;50000)[S]. 中华人民共和国地质矿产部, 1991.

    Google Scholar

    [46] DZ / T0004-91.The technical specification for gravity survey (1;50000)[S]. Ministry of Geology and Mineral Resources of the People's Republic of China, 1991.

    Google Scholar

    [47] DZ/T0004-2015.重力调查技术规范(1;50000)[S]. 中华人民共和国国土资源部, 2015.

    Google Scholar

    [48] DZ / T0004-2015.The technical specification for gravity survey (1;50000)[S]. Ministry of Land and Resources of the People's Republic of China, 2015.

    Google Scholar

    [49] DZ/T0171-1997.大比例尺重力勘查规范[S]. 中华人民共和国地质矿产部, 1997.

    Google Scholar

    [50] DZ/T0171-1997.Large-scale gravity survey specification[S]. Ministry of Geology and Mineral Resources of the People's Republic of China, 1997.

    Google Scholar

    [51] DZ/T0171-2017.大比例尺重力勘查规范[S]. 中华人民共和国国土资源部, 2017.

    Google Scholar

    [52] DZ/T0171-2017.Large-scale gravity survey specification[S]. Ministry of Natural Resources of the People's Republic of China, 2017.

    Google Scholar

    [53] CH/T1015.1-2007.基础地理信息数字产品1;10000、1;50000生产技术规程—第1部分:数字线划图(DLG)[S]. 国家测绘局, 2007.

    Google Scholar

    [54] CH/T1015.1-2007. Technical rules for producing digital products of 1;10000 and 1;50000 fundamental geographic information—Part 1:Digital line graphs[S]. State Bureau of Surveying and Mapping, 2007.

    Google Scholar

    [55] CH/T1015.2-2007.基础地理信息数字产品1;10000、1;50000生产技术规程—第2部分:数字高程模型(DEM)[S]. 国家测绘局, 2007.

    Google Scholar

    [56] CH/T1015.2-2007. Technical rules for producing digital products of 1;10000 and 1;50000 fundamental geographic information—Part 2:Digital elevation models[S]. State Bureau of Surveying and Mapping, 2007.

    Google Scholar

    [57] CH/T9001.1-2013.基础地理信息数字成果1;5000、1;10000、1;25000、1;50000、1;100000—第1部分:数字线划图[S]. 国家测绘地理信息局, 2013.

    Google Scholar

    [58] CH/T9001.1-2013. Digital products of fundamental geographic information—1;5000,1;10000,1;25000,1;50000,1;100000—Part 1: Digital line graphs[S]. National Bureau of Surveying,Mapping and Geographic Information, 2013.

    Google Scholar

    [59] CH/T9001.2-2010.基础地理信息数字成果1;5000、1;10000、1;25000、1;50000、1;100000数字高程模型[S]. 国家测绘局, 2010.

    Google Scholar

    [60] CH/T9001.2-2010. Digital products of fundamental geographic information—1;5000,1;10000,1;25000 1;50000,1;100000 digital elevation models[S]. State Bureau of Surveying and Mapping, 2010.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(908) PDF downloads(99) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint