China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2021 Vol. 45, No. 5
Article Contents

XING Tao, YUAN Wei, LI Jian-Hui. 2021. One-dimensional Occam's inversion for transient electromagnetic data excited by a loop source. Geophysical and Geochemical Exploration, 45(5): 1320-1328. doi: 10.11720/wtyht.2021.0103
Citation: XING Tao, YUAN Wei, LI Jian-Hui. 2021. One-dimensional Occam's inversion for transient electromagnetic data excited by a loop source. Geophysical and Geochemical Exploration, 45(5): 1320-1328. doi: 10.11720/wtyht.2021.0103

One-dimensional Occam's inversion for transient electromagnetic data excited by a loop source

  • A 1D inversion code is developed for the loop-source transient electromagnetic method (TEM) based on the open-source code Dipole1D and Occam's algorithm. This code is tested by a four-layer stratified model. Then, the model with a tilted earth-air interface is considered, for which the synthetic data are calculated by 3D finite-element method. The inversion results show that 1D inversion can be directly used for the scenario with tilted interface. Finally, this 1D inversion code is used for a field case, in which TEM is employed to delineate the 3D distributed domains of a basalt which intruded into shale and sandstone. The inversion result shows that the thickness of the basalt coincides with the drilling data, and the shape of the basalt like a pot bottom.
  • 加载中
  • [1] Flores C, Peralta-Ortega S A. Induced polarization with in-loop transient electromagnetic soundings: A case study of mineral discrimination at El Arco porphyry copper, Mexico[J]. Journal of Applied Geophysics, 2009, 68(3):423-436.

    Google Scholar

    [2] Xue G Q, Qin K Z, Li X, et al. Discovery of a large-scale porphyry molybdenum deposit in Xizang through a modified TEM exploration method[J]. Journal of Environmental and Engineering Geophysics, 2012, 17(1):19-25.

    Google Scholar

    [3] Yang D, Oldenburg D W. Three-dimensional inversion of airborne time-domain electromagnetic data with applications to a porphyry deposit[J]. Geophysics, 2012, 77(2):B23-B34.

    Google Scholar

    [4] Scholl C, Helwig S L, Tezkan B, et al. 1-D multimodel joint inversion of TEM-data over multidimensional structures[J]. Geophysical Journal International, 2009, 176(1):81-94.

    Google Scholar

    [5] Kirkegaard C, Auken E. A parallel, scalable and memory efficient inversion code for very large-scale airborne electromagnetics surveys[J]. Geophysical Prospecting, 2015, 63(2):495-507.

    Google Scholar

    [6] 孙怀凤, 张诺亚, 柳尚斌, 等. 基于L1范数的瞬变电磁非线性反演[J]. 地球物理学报, 2019, 62(12):4860-4873.

    Google Scholar

    [7] Sun H F, Zhang N Y, Liu S B, et al. L1-norm based nonlinear inversion of transient electromagnetic data[J]. Chinese J. Geophys., 2019, 62(12):4860-4873.

    Google Scholar

    [8] Liu Y, Yin C, Qiu C, et al. 3-D inversion of transient EM data with topography using unstructured tetrahedral grids[J]. Geophysical Journal International, 2019, 217(1):301-318.

    Google Scholar

    [9] Auken E, Christiansen A V, Kirkegaard C, et al. An overview of a highly versatile forward and stable inverse algorithm for airborne, ground-based and borehole electromagnetic and electric data[J]. Exploration Geophysics, 2015, 46(3):223-235.

    Google Scholar

    [10] Raiche A P, Jupp D L B, Ruter H, et al. The joint use of coincident loop transient electromagnetic and Schlumberger sounding to resolve layered structures[J]. Geophysics, 1985, 50(10):1618-1627.

    Google Scholar

    [11] 黄皓平, 王维中. 时间域航空电磁数据的反演[J]. 地球物理学报, 1990, 33(1):87-97.

    Google Scholar

    [12] Huang H P, Wang W Z. Inversion of time-domain airborne electromagnetic data[J]. Chinese J. Geophys., 1990, 33(1):87-97.

    Google Scholar

    [13] Farquharson C G, Oldenburg D W. Inversion of time-domain electromagnetic data for a horizontally layered earth[J]. Geophysical Journal International, 1993, 114(3):433-442.

    Google Scholar

    [14] Effersø F, Auken E, Sørensen K I. Inversion of band-limited TEM responses[J]. Geophysical Prospecting, 1999, 47(4):551-564.

    Google Scholar

    [15] Auken E, Christiansen A V. Layered and laterally constrained 2D inversion of resistivity data[J]. Geophysics, 2004, 69(3):752-761.

    Google Scholar

    [16] Auken E, Christiansen A V, Jacobsen L H, et al. A resolution study of buried valleys using laterally constrained inversion of TEM data[J]. Journal of Applied Geophysics, 2008, 65(1):10-20.

    Google Scholar

    [17] Viezzoli V, Christiansen A V, Auken E, et al. Quasi-3D modeling of airborne TEM data by spatially constrained inversion[J]. Geophysics, 2008, 73(3):F105-F113.

    Google Scholar

    [18] Constable S C, Parker R L, Constable C G. Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data[J]. Geophysics, 1987, 52(3):289-300.

    Google Scholar

    [19] Sudha , Tezkan B, Siemon B. Appraisal of a new 1D weighted joint inversion of ground based and helicopter-borne electromagnetic data[J]. Geophysical Prospecting, 2014, 62(3):597-614.

    Google Scholar

    [20] 毛立峰, 王绪本, 陈斌. 直升机航空瞬变电磁自适应正则化一维反演方法研究[J]. 地球物理学进展, 2011, 26(1):300-305.

    Google Scholar

    [21] Mao L F, Wang X B, Chen B. Study on an adaptive regularized 1D inversion method of helicopter TEM data[J]. Progress in Geophysics, 2011, 26(1):300-305.

    Google Scholar

    [22] 齐彦福, 殷长春, 王若, 等. 多通道瞬变电磁m序列全时正演模拟与反演[J]. 地球物理学报, 2015, 58(7):2566-2577.

    Google Scholar

    [23] Qi Y F, Yin C C, Wang R, et al. Multi-transient EM full-time forward modeling and inversion of m-sequences[J]. Chinese J. Geophys., 2015, 58(7):2566-2577.

    Google Scholar

    [24] 李海, 薛国强, 钟华森, 等. 多道瞬变电磁法共中心点道集数据联合反演[J]. 地球物理学报, 2016, 59(12):4439-4447.

    Google Scholar

    [25] Li H, Xue G Q, Zhong H S, et al. Joint inversion of CMP gathers of multi-channel transient electromagnetic data[J]. Chinese J. Geophys., 2016, 59(12):4439-4447.

    Google Scholar

    [26] Li M, Cheng J, Wang P, et al. Transient electromagnetic inversion based on the PSO-DLS combination algorithm[J]. Exploration Geophysics, 2019, 50(5):472-480.

    Google Scholar

    [27] Key K. 1D inversion of multicomponent, multifrequency marine CSEM data: Methodology and synthetic studies for resolving thin resistive layers[J]. Geophysics, 2009, 74(2):F9-F20.

    Google Scholar

    [28] Guptasarma D, Singh B. New digital linear filters for Hankel J0 and J1 transforms[J]. Geophysical Prospecting, 1997, 45(5):745-762.

    Google Scholar

    [29] Anderson W L. Fourier cosine and sine transforms using lagged convolutions in double-precision (subprograms DLAGF0/DLAGF1) [R]. U.S. Geological Survey, 1983.

    Google Scholar

    [30] Li J, Lu X, Farquharson C G, et al. A finite-element time-domain forward solver for electromagnetic methods with complex-shaped loop sources[J]. Geophysics, 2018, 83(3):E117-E132.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1222) PDF downloads(199) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint