China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2021 Vol. 45, No. 5
Article Contents

LUO Feng, ZHOU Xi-Hua, HU Ping-Hua, JIANG Zuo-Xi, WANG Guan-Xin, QU Jin-Hong, LI Xing-Su, LI Zhao-Liang, ZHAO Ming. 2021. Research on localization of platform-based airborne gravity exploration system. Geophysical and Geochemical Exploration, 45(5): 1256-1265. doi: 10.11720/wtyht.2021.0017
Citation: LUO Feng, ZHOU Xi-Hua, HU Ping-Hua, JIANG Zuo-Xi, WANG Guan-Xin, QU Jin-Hong, LI Xing-Su, LI Zhao-Liang, ZHAO Ming. 2021. Research on localization of platform-based airborne gravity exploration system. Geophysical and Geochemical Exploration, 45(5): 1256-1265. doi: 10.11720/wtyht.2021.0017

Research on localization of platform-based airborne gravity exploration system

  • To meet the accuracy requirements of airborne gravity surveys for deep resource exploration, an airborne gravity survey platform has been developed and integrated based on previous research. The platform system is an airborne gravimeter platform consisting of a three-axis stabilized platform and a quartz flexible pendulum accelerometer. It adopts self-calibration technology and the real-time error estimation and correction technology of platform attitude. Meanwhile, it is equipped with a navigation and positioning system, a vibration reduction system, an unattended system, and data processing software. Flying survey data show that the internal coincidence accuracy of the repeated-line flight data of the airborne gravity survey platform is less than 0.6×10-5 m/s2(100 s), reaching the international advanced level. Therefore, this platform allows the technology and equipment of airborne gravity surveys to be localized.
  • 加载中
  • [1] 熊盛青, 周锡华, 郭志宏, 等. 航空重力勘探理论方法与应用[M]. 北京: 地质出版社, 2010.

    Google Scholar

    [2] Xiong S Q, Zhou X H, Guo Z H, et al. Theory, method and application of aerial gravity exploration [M]. Beijing: Geological Publishing House, 2010.

    Google Scholar

    [3] 熊盛青. 我国航空重磁勘探技术现状与发展趋势[J]. 地球物理学进展, 2009, 24(1):113-117.

    Google Scholar

    [4] Xiong S Q. The present situation and development of airborne gravity and magnetic survey techniques in China[J]. Progress in Geophysics, 2009, 24(1):113-117.

    Google Scholar

    [5] 孙中苗. 航空重力测量理论、方法及应用研究[D]. 郑州:中国人民解放军信息工程大学, 2004.

    Google Scholar

    [6] Sun Z M. Theory, method and application of aerogravimetry[D]. Zhengzhou: Information Engineering University of the Chinese People’s Liberation Army, 2004.

    Google Scholar

    [7] 宁津生, 黄谟涛, 欧阳永忠, 等. 海空重力测量技术进展[J]. 海洋测绘, 2014, 34(3):67-72.

    Google Scholar

    [8] Ning J S, Huang M T, Ouyang Y Z, et al. Progress of sea air gravimetry technology[J]. Hydrographic Surveying and Charting, 2014, 34(3):67-72.

    Google Scholar

    [9] Forsberg R, Olesen A V, Einarsson I. Airborne gravimetry for geoid determination with Lacoste Romberg and Chekan gravimeters[J]. Gyroscopy and Navigation, 2015, 6(4):265-270.

    Google Scholar

    [10] Olson D. GT-1A and GT-2A airborne gravimeters: Improvements in design, operation, and processing from 2003 to 2010[C]// ASEG Conference Sydney, Australia, 2010.

    Google Scholar

    [11] 胡平华, 赵明, 黄鹤, 等. 航空/海洋重力测量仪器发展综述[J]. 导航定位与授时, 2017, 7(7):10-18.

    Google Scholar

    [12] Hu P H, Zhao M, Huang H, et al. Overview of the development of aeronautical/oceanic gravimetric instruments[J]. Navigation, Positioning and Timing, 2017, 7(7):10-18.

    Google Scholar

    [13] 罗锋, 王冠鑫, 周锡华, 等. 三轴稳定平台式航空重力测量数据处理方法研究与实现[J]. 物探与化探, 2019, 43(5):872-880.

    Google Scholar

    [14] Luo F, Wang G X, Zhou X H, et al. Research and implementation of data processing method for three-axis stabilized platform airborne gravity measuring system[J]. Geophysical and Geochemical Exploration, 2019, 43(5):872-880.

    Google Scholar

    [15] 罗锋, 郭志宏, 骆遥, 等. 航空重力数据的等波纹FIR 低通滤波试验[J]. 物探与化探, 2012, 36(5):856-860.

    Google Scholar

    [16] Luo F, Guo Z H, Luo Y, et al. Equal-ripple FIR low-pass filtering test for airborne gravity data[J]. Geophysical and Geochemical Exploration, 2012, 36(5):856-860.

    Google Scholar

    [17] 蔡劭琨, 吴美平, 张开东. 航空重力测量中FIR低通滤波器的比较[J]. 物探与化探, 2010, 34(1):74-78.

    Google Scholar

    [18] Cai S K, Wu M P, Zhang K D. Comparison of FIR low-pass filters in aerogravimetry[J]. Geophysical and Geochemical Exploration, 2010, 34(1):74-78.

    Google Scholar

    [19] 蔡体菁, 周薇, 鞠玲玲. 平台式重力仪测量数据的卡尔曼滤波处理[J]. 中国惯性技术学报, 2015, 23(6):718-720.

    Google Scholar

    [20] Cai T J, Zhou W, Ju L L. Processing for measurement data of platform gravimeter by Kalman filter[J]. Journal of Chinese Inertial Technology, 2015, 23(6):718-720.

    Google Scholar

    [21] 王静波, 熊盛青, 郭志宏, 等. 航空重力数据Kalman滤波平滑技术应用研究[J]. 地球物理学进展, 2012, 27(4):1717-1722.

    Google Scholar

    [22] Wang J B, Xiong S Q, Guo Z H, et al. Application of Kalman filtering smoothing technique for aeronautical gravity data[J]. Progress in Geophysics, 2012, 27(4):1717-1722.

    Google Scholar

    [23] 郭志宏, 熊盛青, 周坚鑫, 等. 航空重力重复线测试数据质量评价方法研究[J]. 地球物理学报, 2008, 51(5):1538-1543.

    Google Scholar

    [24] Guo Z H, Xiong S Q, Zhou J X, et al. Study on the evaluation method of data quality for airborne gravity repeat line test[J]. Journal of Geophysics, 2008, 51(5):1538-1543.

    Google Scholar

    [25] 姜作喜, 张虹, 郭志宏. 航空重力测量内符合精度计算方法[J]. 物探与化探, 2010, 34(5):672-676.

    Google Scholar

    [26] Jiang Z X, Zhang H, Guo Z H. Calculating method of internal coincidence accuracy in airborne gravimetry[J]. Geophysical and Geochemical Exploration, 2010, 34(5):672-676.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(945) PDF downloads(135) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint