[1] |
李武, 董亚萍. 西藏盐湖卤水成盐过程自然能的应用[J]. 科技导报, 2017, 35(12):39-43.
Google Scholar
|
[2] |
Li W, Dong Y P. Application of natural energy in salt precipitation from Tibetan salt lakes[J]. Science & Technology Review, 2017, 35(12):39-43.
Google Scholar
|
[3] |
刘喜方, 郑绵平. 西藏盐湖的钾盐资源[J]. 科技导报, 2017, 35(12):62-66.
Google Scholar
|
[4] |
Liu X F, Zheng M P. Saline lake potash resources in Tibet[J]. Science & Technology Review, 2017, 35(12):62-66.
Google Scholar
|
[5] |
焦鹏程, 张建伟, 姚佛军, 等. 马海盐湖深部卤水钾盐勘查与研究进展[J]. 矿床地质, 2016, 35(6):1305-1308.
Google Scholar
|
[6] |
Jiao P C, Zhang J W, Yao F J, et al. Exploration and research progress of potash in deep brine of Mahai salt Lake[J]. Mineral Deposits, 2016, 35(6):1305-1308.
Google Scholar
|
[7] |
黄华, 刘成林, 张士万, 等. 深层富钾卤水的地球物理探测技术及应用——以江陵凹陷为例[J]. 矿床地质, 2014, 33(5):1101-1107.
Google Scholar
|
[8] |
Huang H, Liu C L, Zhang S W, et al. Application of geophysical detection method to exploration of deep potassium-rich brine formation: A case study of Jiangling Depression[J]. Mineral Deposits, 2014, 33(5):1101-1107.
Google Scholar
|
[9] |
潘剑伟, 占嘉诚, 洪涛, 等. 地面核磁共振方法和高密度电阻率法联合找水[J]. 地质科技情报, 2018, 37(3):253-262.
Google Scholar
|
[10] |
Pan J W, Zhan J C, Hong T, et al. Combined use of surface nuclear magnetic resonance and electrical resistivity imaging in detecting groundwater[J]. Geological Science and Technology Information, 2018, 37(3):253-262.
Google Scholar
|
[11] |
李宏恩, 徐海峰, 李铮, 等. 地面核磁共振法与高密度电法联合探测堤坝渗漏隐患原位试验研究[J]. 地球物理学进展, 2019, 34(4):1627-1634.
Google Scholar
|
[12] |
Li H E, Xu H F, Li Z, et al. In situ expermental study on resistivity-magnetic resonance sounding coupling imaging diagnosis method for an embankment dam with seepage defects[J]. Progress in Geophysics, 2019, 34(4):1627-1634.
Google Scholar
|
[13] |
高敬语, 谭嘉言, 朱占升, 等. 音频大地电磁法在地下水质评价中的应用[J]. 物探与化探, 2013, 37(5):895-898.
Google Scholar
|
[14] |
Gao J Y, Tan J Y, Zhu Z S, et al. The appication of the audio magnetotelluric method to the assessment of underground water quality[J]. Geophysical and Geochemical Exploration, 2013, 37(5):895-898.
Google Scholar
|
[15] |
陈松, 刘磊, 刘怀庆, 等. 北部湾咸淡水分界面划分中的电法应用分析[J]. 地球物理学进展, 2019, 34(4):1592-1599.
Google Scholar
|
[16] |
Chen S, Liu L, Liu H Q, et al. Application analysis of electrical method in dividing saltwater and freshwater interface in Beibu bay[J]. Progress in Geophysics, 2019, 34(4):1592-1599.
Google Scholar
|
[17] |
龙作元, 何胜. 核磁共振测深方法在多年冻土区找水中的应用[J]. 物探与化探, 2015, 39(2):288-291.
Google Scholar
|
[18] |
Long Z Y, He S. Application of nuclear magnetic resonance sounding method in finding water in permafrost regions[J]. Geophysical and Geochemical Exploration, 2015, 39(2):288-291.
Google Scholar
|
[19] |
刘军. 地面核磁共振与瞬变电磁联合探测技术在矿区老空水探测中的应用[J]. 建井技术, 2016, 37(6):16-18.
Google Scholar
|
[20] |
Liu J. Surface ground nuclear magnetic resonance and transient electromagnetic combined detection technology applied to detection of water in goaf of mining area[J]. Mine Construction Technology, 2016, 37(6):16-18.
Google Scholar
|
[21] |
何胜, 蒋厚辉, 苌有全, 等. 核磁共振测深方法在盐湖区卤水钾矿勘查中的应用[J]. 地球物理学进展, 2015, 30(1):332-338.
Google Scholar
|
[22] |
He S, Jiang H H, Chang Y Q, et al. Application of MRS method in exploration brine potassium ore in saline lake district[J]. Progress in Geophysics, 2015, 30(1):332-338.
Google Scholar
|
[23] |
王瑞丰, 温来福, 程久龙, 等. 高密度电法与瞬变电磁法联合勘查河北承德地区基岩裂隙水[J]. 地球科学与环境学报, 2020, 42(6):784-790.
Google Scholar
|
[24] |
Wang R F, Wen L F, Cheng J L, et al. Joint detection of bedrock fissure water using high-density electrical method and transient electromagnetic method in Chende Area of Hebei China[J]. Journal of Earth Sciences and Environment, 2020, 42(6):784-790.
Google Scholar
|
[25] |
许艺煌, 黄真萍, 程志伟, 等. 高密度电阻率法在弃渣堆积体分布调查中的应用[J]. 物探与化探, 2020, 44(2):435-440.
Google Scholar
|
[26] |
Xu Y H, Huang Z P, Cheng Z W, et al. The application of high density electrical resistivity method to the investigation of the distribution of slag accumula-tion in hydropower station[J]. Geophysical and Geochemical Exploration, 2020, 44(2):435-440.
Google Scholar
|